Dust particles selection in plasma-forming gases with different ionization potentials
E. S. Dzlieva1, V. Yu. Karasev1, L. A. Novikov1, S. I. Pavlov1, M. S. Golubev1, I.Ch. Mashek1
1St. Petersburg State University, St. Petersburg, Russia
Email: plasmadust@yandex.ru
The sizes of dust particles capable of levitating in dust traps in striations in a glow discharge in all inert gases are quantitatively determined for the same discharge parameters. A more than twofold decrease in the particle size was established upon passing from the gas with the maximum ionization potential (He) to Xe. The dependence found in the experiment is interpreted from the point of view of the conditions of particle levitation. It is shown that in gases with a low ionization potential in the balance of forces, the ion drag force exceeds the force of gravity, while the absolute values of the forces decrease with decreasing particle size. The discovered effect can be used for fine trapping of dust particles in plasma traps. Keywords: Dusty plasma, glow discharge, polydisperse particles, inert gases, ion drag force.
- V.E. Fortov, G.E. Mofill. Complex and Dusty Plasmas: from Laboratory to Space (Taylor \& Francis Group, NY., 2010)
- S.V. Vladimirov, K. Ostrikov, A.A. Samarian. Physics and Applications of Complex Plasmas (Imperial College Press, London, 2005)
- V.N. Tsytovich, G.E. Morfill, S.V. Vladimirov, H.M. Thomas. Elementary Physics of Complex Plasmas (Springer, NY., 2008)
- N.A. Vorona, A.V. Gavrikov, A.S. Ivanov, O.F. Petrov, V.E. Fortov, I.A. Shakhova. ZhETF 132, 941 (2007) (in Russian)
- N. Sato. AIP Conf. Proc., 799, 97 (2005). DOI: 10.1063/1.2134577
- E.S. Dzlieva, M.A. Ermolenko, V.Yu. Karasev. ZhTF, 82 (1), 147 (2012)
- M.A. Ermolenko, E.S. Dzlieva, V.Yu. Karasev, S.I. Pavlov, V.A. Polishchuk, A.P. Gorbenko. Pisma v ZhTF, 41 (24), 77 (2015) (in Russian)
- V.Yu. Karasev, V.A. Polishchuk, A.P. Gorbenko, E.S. Dzlieva, M.A. Ermolenko, M.M. Makar. FTT 58, 1007 (2016) (in Russian)
- X. Grin, V. Lein. Aerozoli --- pyli, dymy i tumany (Khimiyay, L., 1969) (in Russian)
- E.S. Dzlieva, M.A. Ermolenko, V.Yu. Karasev. ZhTF, 82 (7), 51 (2012)
- A. Siasko, Yu. Golubovskii, S. Pavlov, E. Dzlieva, L. Novikov, M. Golubev, V. Karasev. Phys. Plasmas, 30, 033701 (2023). DOI: 10.1063/5.0135329
- E.S. Dzlieva, S.A. Mayorov, L.A. Novikov, S.I. Pavlov, M.V. Balabas, I.R. Krylov, V.Yu. Karasev. Fizika plazmy, 48 (914), (2022) (in Russian). DOI: 10.31857/S0367292122600741
- P. Rajst. Aerozoli. Vvedeniye v teoriyu (Mir, M., 1987) (in Russian)
- A.M. Lipaev, V.I. Molotkov, A.P. Nefedov, O.F. Petrov, V.M. Torchinsky, V.E. Fortov, A.G. Khrapak, S.A. Khrapak. ZhETF 112, 2030 (1997) (in Russian)
- Yu.P. Rayzer. Fizika gazovogo razryada (Nauka, M., 1992) (in Russian)
- Yu.B. Golubovsky, A.A. Kudryavtsev, V.O. Nekuchaev, I.A. Prokhorova, L.D. Tsendin. Kinetika elektronov v neravnovesnoj gazorazryadnoj plazme (St. Petersburg State University, St. Petersburg, 2004) (in Russian)
- V.E. Fortov, A.G. Khrapak, S.A. Khrapak, V.I. Molotkov, O.F. Petrov. UFN, 174 (5), 495 (2004) (in Russian). DOI: 10.3367/UFNr.0174.200405b.0495
- S.A. Majorov. Fizika plazmy, 35 (869), (2009) (in Russian)
- S.A. Majorov. Kratkie soobshcheniya po fizike FIAN, 4, 18 (2021) (in Russian)
- R.I. Golyatina, S.A. Majorov. Prikladnaya fizika, 3, (in Russian). 11 (2021). DOI: 10.51368/1996-0948-2021-3-11-16
- E.S. Dzlieva, S.A. Mayorov, L.A. Novikov, S.I. Pavlov, M.V. Balabas, I.R. Krylov, V.Yu. Karasev. Fizika plazmy, 49 (98), (2023) (in Russian). DOI: 10.31857/S0367292122600911
- L.V. Shibkova, V.M. Shibkov. Razryad v smesyah inertnyh gazov (Fizmatlit, M., 2005) (in Russian)
- M.S. Barnes, J.H. Keller, J.S. Forster, J.A. O'Neill, D.K. Coultas. Phys. Rev. Lett., 68, 313 (1992). DOI: 10.1103/PhysRevLett.68.313
- S.A. Khrapak, A.V. Ivlev, G.E. Morfill, H.M. Thomas. Phys. Rev. E, 66, 046414 (2002). DOI: 10.1103/PhysRevE.66.046414
- D.S. Lapitskiy, V.S. Filinov, L.V. Deputatova, L.M. Vasilyak, V.I. Vladimirov, V.Ya. Pecherkin. High Temperature, 53, 1 (2015). DOI: 10.1134/S0018151X15010162
- S.I. Popel, A.P. Golub', A.I. Kassem, L.M. Zelenyi. Phys. Plasmas, 29, 013701 (2022). DOI: 10.1063/5.0077732
- S.I. Popel, A.P. Golub. Pis'ma v ZhETF 115, 629, (2022). (in Russian). DOI: 10.31857/S1234567822100056
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.