Gradient layers in a four-component Al-Ga-As-Sn system growth by liquid-phase epitaxy
Potapovich N. S.
1, Khvostikov V. P.
1, Khvostikova O. A.
1, Vlasov A. S.
11Ioffe Institute, St. Petersburg, Russia
Email: nspotapovich@mail.ioffe.ru
The growth of thick (more than 50 μm) AlxGa1-xAs gradient layers in the Al-Ga-As-Sn system has been modeled. Sn-doped AlxGa1-xAs layers up to 85 μm thick were obtained by liquid-phase epitaxy. The obtained experimental profiles of the AlxGa1-xAs composition gradient satisfy the used theoretical model for the cases of growth from a limited volume of a solution-melt. Keywords: Liquid phase epitaxy, AlGaAs, phase equilibrium, photovoltaic cell, gradient layers.
- M. Perales, M. Yang, Ch. Wu, Ch. Hsu, W. Chao, K. Chen, T. Zahuranec. In: Proc. SPIE 9733, High-Power Diode Laser Technology and Applications XIV, 97330U, 97330U-1 (2016). DOI: 10.1117/12.2213886
- V.P. Khvostikov, P.V. Pokrovskiy, O.A. Khvostikova, A.N. Panchak, V.M. Andreev. Tech. Phys. Lett., 44, 776 (2018) DOI: 10.1134/S1063785018090079
- A. Panchak, V. Khvostikov, P. Pokrovskiy. Opt. Laser Technol., 136, Paper N106735 (2021). DOI: 10.1016/j.optlastec.2020.106735
- V.P. Khvostikov, A.N. Panchak, O.A. Khvostikova, P.V. Pokrovskiy. IEEE Electron Device Lett., 43, 1717 (2022). DOI: 10.1109/LED.2022.3202987
- B. Kashyap, A. Datta. IEEE Trans. Electron Devices, 64 (6), 2564 (2017). DOI: 10.1109/TED.2017.2692267
- V. Zinovchuk, O. Malyutenko, V. Malyutenko, A. Podoltsev, A. Vilisov. J. Appl. Phys., 104, Paper N033115 (2008). DOI: 10.1063/1.2968220
- H. Kitabayashi, K. Ishihara, Y. Kawabata, H. Matsubara, K. Miyahara, T. Morishita, S. Tanaka. SEI Tech. Rev., 72, 86 (2011). https://sumitomoelectric.com/sites/default/files/2020-12/download_documents/72-12.pdf
- M.R. Dombrugov. Microsyst. Electron. Acoust., 24 (1), 6 (2019). DOI: 10.20535/2523-4455.2019.24.1.160164
- V.A. Ilyukhin, S.Yu. Karpov, E.L. Portnoy, D.N. Tretyakov. Pisma v ZHTF, 4 (11), 629 (1978) (in Russian)
- X. Zhao, K.H. Montgomery, J.M. Woodall. J. Electron. Mater., 43 (11), 3999 (2014). DOI: 10.1007/s11664-014-3340-x
- V. Khvostikov, O. Khvostikova, N. Potapovich, A. Vlasov, R. Salii. Heliyon, 9 (7). e18063 (2023). DOI: 10.1016/j.heliyon.2023.e18063
- A. Saragan. Physical and Chemical Vapor Deposion in Nanofabrication. Ch. 3. (CRC Press, 2016), DOI: 10.1201/9781315370514
- H.C. Casey, M.B. Panish. Heterostructure Lasers (Academic Press, 1978), DOI: 10.1016/B978-0-12-163102-4.50009-9
- M.B. Panish. J. Appl. Phys., 44, 2667 (1973). DOI: 10.1063/1.1662631
- K. Kaneko, M. Ayabe, N. Watanabe. Inst. Phys. Conf. Ser., 33a, 216 (1977)
- M.C. Wu, Y.K. Su. J. Crystal Growth, 96, 52 (1989). DOI: 10.1016/0022-0248(89)90275-3
- W.G. Pfann. Zone Melting (Wiley, 1958). DOI: 10.1107/S0365110X5900130X
- E. Kuphal. Appl. Phys., A52, 380 (1991). DOI: 10.1007/BF00323650
- S. Adachi. III--V Ternary and Quaternary Compounds. Springer Handbook of Electronic and Photonic Materials (Springer, 2017), p. 725-741. DOI: 10.1007/978-3-319-489339_30
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.