Architectonics of zinc oxide nanorod coatings for adsorption gas sensors
A.A. Ryabko1, S.S. Nalimova2, N.V. Permyakov2, A.A. Bobkov2, A.I. Maksimov2, V.M. Kondratev3, K.P. Kotlyar3,4, M.K. Ovezov1, A.S. Komolov5, E.F. Lazneva5, V.A. Moshnikov2, A.N. Aleshin1
1Ioffe Institute, St. Petersburg, Russia
2St. Petersburg State Electrotechnical University “LETI", St. Petersburg, Russia
3Alferov University, Russian Academy of Sciences, St. Petersburg, Russia
4Institute for Analytical Instrumentation of the Russian Academy of Sciences, Saint Petersburg, Russia
5St. Petersburg State University, St. Petersburg, Russia
Email: a.a.ryabko93@yandex.russkarpova@list.ru

PDF
A method for the formation of nanostructured coatings from ZnO nanorods for use in adsorption gas sensors is presented. It has been shown that ultrasonic spray pyrolysis provides the formation of local growth centers for the formation of ZnO nanorods by the low-temperature hydrothermal synthesis. The obtained ZnO nanorods with a small diameter demonstrate a high concentration of oxygen vacancies in the near-surface region of the nanorods and a high surface concentration of hydroxyl groups. An additional method is proposed for testing seed layers by resistance using a liquid probe based on an indium-gallium melt without the need to apply top contacts. The presented technique is suitable for mass production of sensor coatings. The obtained nanostructured coatings from ZnO nanorods demonstrate a high gas analytical response. Keywords: nanorods, zinc oxide, nanostructured coatings, architectonics, technique, scalability, adsorption, gas sensors.
  1. N. Yamazoe, G. Sakai, K. Shimanoe. Catalysis Surveys from Asia, 7, 63 (2003). DOI: 10.1023/A:1023436725457
  2. A.M. Andringa, C. Piliego, I. Katsouras, P.W. Blom, D.M.D. Leeuw. Chem. Mater., 26 (1), 773 (2014). DOI: 10.1021/cm4020628
  3. V.A. Moshnikov, S.S. Nalimova, B.I. Seleznev. Semiconductors, 48 (11), 1499 (2014). DOI: 10.1134/S1063782614110177
  4. J. Shin, S.J. Choi, I. Lee, D.Y. Youn, C.O. Park, J.H. Lee, H.L. Tuller, I.D. Kim. Advanced Functional Mater., 23 (19), 2357 (2013). DOI: 10.1002/adfm.201202729
  5. G. Katwal, M. Paulose, I.A. Rusakova, J.E. Martinez, O.K. Varghese. Nano Lett., 16 (5), 3014 (2016). DOI: 10.1021/acs.nanolett.5b05280
  6. V.V. Sysoev, B.K. Button, K. Wepsiec, S. Dmitriev, A. Kolmakov. Nano Lett., 6 (8), 1584 (2006). DOI: 10.1021/nl060185t
  7. V.V. Sysoev, J. Goschnick, T. Schneider, E. Strelcov, A. Kolmakov. Nano Lett., 7 (10), 3182 (2007). DOI: 10.1021/nl071815+
  8. A. Bobkov, A. Varezhnikov, I. Plugin, F.S. Fedorov, V. Trouillet, U. Geckle, M. Sommer, V. Goffman, V. Moshnikov, V. Sysoev. Sensors, 19 (19), 4265 (2019). DOI: 10.3390/s19194265
  9. Y. Lin, K. Kan, W. Song, G. Zhang, L. Dang, Y. Xie, P. Shen, L. Li, K. Shi. J. Alloys Compounds, 639, (2015). DOI: 10.1016/j.jallcom.2015.03.139
  10. S.W. Fan, A.K. Srivastava, V.P. Dravid. Appl. Phys. Lett. 95, 142106 (2009). DOI: 10.1063/1.3243458
  11. Q. Geng, Z. He, X. Chen, W. Dai, X. Wang. Sensors and Actuators B: Chemical, 188, 293 (2013) DOI: 10.1016/j.snb.2013.07.001
  12. L. Han, D. Wang, Y. Lu, T. Jiang, B. Liu, Y. Lin. J. Phys. Chem. C, 115 (46), 22939 (2011). DOI: 10.1021/jp206352u
  13. A.S. Chizhov, M.N. Rumyantseva, R.B. Vasiliev, D.G. Filatova, K.A. Drozdov, I.V. Krylov, A.V. Marchevsky, O.M. Karakulina, A.M. Abakumov, A.M. Gaskov. Thin Solid Films, 618, 253 (2016). DOI: 10.1016/j.tsf.2016.09.029
  14. E. Comini, C. Baratto, G. Faglia, M. Ferroni, A. Vomiero, G. Sberveglieri. Progress in Mater. Sci., 54 (1), 1 (2009). DOI: 10.1016/j.pmatsci.2008.06.003
  15. S. Wang, Z.X. Lin, W.H. Wang, C.L. Kuo, K.C. Hwang, C.C. Hong. Sensors and Actuators B: Chemical, 194, 1 (2014). DOI: 10.1016/j.snb.2013.12.042
  16. J.D. Prades, R. Jimenez-Di az, F. Hernandez-Ramirez, S. Barth, A. Cirera, A. Romano-Rodriguez, S. Mathur, J.R. Morante. Sensors and Actuators B: Chemical, 140 (2), 337 (2009). DOI: 10.1016/j.snb.2009.04.070
  17. M. Procek, T. Pustelny, A. Stolarczyk. Nanomaterials, 6 (12), 227 (2016). DOI: 10.3390/nano6120227
  18. Y. Sahin, S. Ozturk, N. Ki li nc, A. Kosemen, M. Erkovan, Z.Z. Ozturk. Appl. Surf. Sci., 303, 90 (2014). DOI: 10.1016/j.apsusc.2014.02.083
  19. L. Peng, J. Zhai, D. Wang, Y. Zhang, P. Wang, Q. Zhao, T. Xie. Sens. Actuator B, 148, 66 (2010). DOI: 10.1016/j.snb.2010.04.045
  20. A.A. Ryabko, S.S. Nalimova, D.S. Mazing, O.A. Korepanov, A.M. Guketlov, O.A. Aleksandrova, A.I. Maximov, V.A. Moshnikov, Z.V. Shomakhov, A.N. Aleshin. Tech. Phys., 92 (6) 717 (2022). DOI: 10.21883/TP.2022.06.54418.15-22
  21. J. Guo, J. Zhang, M. Zhu, D. Ju, H. Xu, B. Cao. Sensors and Actuators B: Chemical, 199, 339 (2014). DOI: 10.1016/j.snb.2014.04.010
  22. M.-W. Ahn, K.-S. Park, J.-H. Heo, J.-G. Park, D.-W. Kim, K.J. Choi, J.-H. Lee, S.-H. Hong. Appl. Phys. Lett., 93, 263103 (2008). DOI: 10.1063/1.3046726
  23. A. Ejsmont, J. Goscianska. Materials, 16 (4), 1641 (2023). DOI: 10.3390/ma16041641
  24. S. Barauh, J. Dutta. Sci. Technol. Adv. Mater., 10, 013001 (2009). DOI: 10.1088/1468-6996/10/1/013001
  25. S. Xu, Z.L. Wang. Nano Research, 4, 1013 (2011). DOI: 10.1007/s12274-011-0160-7
  26. S.F. Wang, T.Y. Tseng, Y.R. Wang, C.Y. Wang, H.C. Lu, W.L. Shih. Intern. J. Appl. Ceramic Technol., 5 (5), 419 (2008). DOI: 10.1111/j.1744-7402.2008.02242.x
  27. A.A. Ryabko, A.I. Maksimov, V.A. Moshnikov. Vestnik NovGU, 6 (104), 32 (2017). DOI: 10.34680/2076-8052.2019.4(116).40-43
  28. S.A. Kadinskaya, V.M. Kondratev, I.K. Kindyushov, O.Y. Koval, D.I. Yakubovsky, A. Kusnetsov, A.I. Lihachev, A.V. Nashchekin, I.K. Akopyan, A.Y. Serov, M.E. Labzovskaya,; S.V. Mikushev, B.V. Novikov, I.V. Shtrom, A.D. Bolshakov. Nanomaterials, 13 (1), 58 (2023). DOI: 10.3390/nano13010058
  29. H.E. Unalan, P. Hiralal, N. Rupesinghe, S. Dalal, W. Milne, G. Amaratunga. Nanotechnology, 19, 255608 (2008). DOI: 10.1088/0957-4484/19/25/255608
  30. C. Chevalier-Cesar, M. Capochichi-Gnambodoe, Y. Leprince-Wang. Appl. Phys. A, 115, 953 (2014). DOI: 10.1007/s00339-013-7908-8
  31. X.M. Sun, X. Chen, Z.X. Deng, Y.D. Li. Mater. Chem. Phys., 78 (1), 99 (2003). DOI: 10.1016/S0254-0584(02)00310-3
  32. N. Permiakov, E. Maraeva, A. Bobkov, R. Mbwahnche, V. Moshnikov. Technologies, 11 (1), 26 (2023). DOI: 10.3390/technologies11010026
  33. A.A. Ryabko, A.A. Bobkov, S.S. Nalimova, A.I. Maksimov, V.S. Levitskii, V.A. Moshnikov, E.I. Terukov. Tech. Phys., 67 (5), 644 (2022). DOI: 10.21883/TP.2022.05.53683.314-21
  34. S. Iaiche; A. Djelloul. J. Spectrosc., 2015, 836859 (2015). DOI: 10.1155/2015/836859
  35. I.A. Pronin, I.A. Averin, A.A. Karmanov, N.D. Yakushova, A.S. Komolov, E.F. Lazneva, M.M. Sychev, V.A. Moshnikov, G. Korotcenkov. Nanomaterials, 12, 1924 (2022). DOI: 10.3390/nano12111924
  36. M. Kwoka, A. Kulis-Kapuscinska, D. Zappa, E. Comini, J. Szuber. Nanotechnology, 31 (46), 465705 (2020). DOI: 10.1088/1361-6528/ab8dec
  37. R. Al-Gaashani, S. Radiman, A.R. Daud, N. Tabet, Y. Al-Douri. Ceram. Int., 39, 2283 (2013). DOI: 10.1016/j.ceramint.2012.08.075
  38. E. Gr nas, M. Busch, B. Arndt, M. Creutzburg, G.D.L. Semione, J. Gustafson, A. Schaefer, V. Vonk, H. Gro nbeck, A. Stierle. Commun. Chem., 4, 7 (2021). DOI: 10.1038/s42004-020-00442-6
  39. R. Heinhold, M.W. Allen. J. Mater. Res., 27 (17), 2214 (2012). DOI: 10.1557/jmr.2012.181
  40. X. Zhang, J. Qin, Y. Xue, P. Yu, B. Zhang, L. Wang, R. Liu. Scientific Feports, 4 (1), 1 (2014). DOI: 10.1038/srep04596

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru