A.A. Ryabko1, S.S. Nalimova2, N.V. Permyakov2, A.A. Bobkov2, A.I. Maksimov2, V.M. Kondratev3, K.P. Kotlyar3,4, M.K. Ovezov1, A.S. Komolov5, E.F. Lazneva5, V.A. Moshnikov2, A.N. Aleshin1
1Ioffe Institute, St. Petersburg, Russia
2St. Petersburg State Electrotechnical University “LETI", St. Petersburg, Russia
3Alferov University, Russian Academy of Sciences, St. Petersburg, Russia
4Institute for Analytical Instrumentation of the Russian Academy of Sciences, Saint Petersburg, Russia
5St. Petersburg State University, St. Petersburg, Russia
Email: a.a.ryabko93@yandex.russkarpova@list.ru
A method for the formation of nanostructured coatings from ZnO nanorods for use in adsorption gas sensors is presented. It has been shown that ultrasonic spray pyrolysis provides the formation of local growth centers for the formation of ZnO nanorods by the low-temperature hydrothermal synthesis. The obtained ZnO nanorods with a small diameter demonstrate a high concentration of oxygen vacancies in the near-surface region of the nanorods and a high surface concentration of hydroxyl groups. An additional method is proposed for testing seed layers by resistance using a liquid probe based on an indium-gallium melt without the need to apply top contacts. The presented technique is suitable for mass production of sensor coatings. The obtained nanostructured coatings from ZnO nanorods demonstrate a high gas analytical response. Keywords: nanorods, zinc oxide, nanostructured coatings, architectonics, technique, scalability, adsorption, gas sensors.
- N. Yamazoe, G. Sakai, K. Shimanoe. Catalysis Surveys from Asia, 7, 63 (2003). DOI: 10.1023/A:1023436725457
- A.M. Andringa, C. Piliego, I. Katsouras, P.W. Blom, D.M.D. Leeuw. Chem. Mater., 26 (1), 773 (2014). DOI: 10.1021/cm4020628
- V.A. Moshnikov, S.S. Nalimova, B.I. Seleznev. Semiconductors, 48 (11), 1499 (2014). DOI: 10.1134/S1063782614110177
- J. Shin, S.J. Choi, I. Lee, D.Y. Youn, C.O. Park, J.H. Lee, H.L. Tuller, I.D. Kim. Advanced Functional Mater., 23 (19), 2357 (2013). DOI: 10.1002/adfm.201202729
- G. Katwal, M. Paulose, I.A. Rusakova, J.E. Martinez, O.K. Varghese. Nano Lett., 16 (5), 3014 (2016). DOI: 10.1021/acs.nanolett.5b05280
- V.V. Sysoev, B.K. Button, K. Wepsiec, S. Dmitriev, A. Kolmakov. Nano Lett., 6 (8), 1584 (2006). DOI: 10.1021/nl060185t
- V.V. Sysoev, J. Goschnick, T. Schneider, E. Strelcov, A. Kolmakov. Nano Lett., 7 (10), 3182 (2007). DOI: 10.1021/nl071815+
- A. Bobkov, A. Varezhnikov, I. Plugin, F.S. Fedorov, V. Trouillet, U. Geckle, M. Sommer, V. Goffman, V. Moshnikov, V. Sysoev. Sensors, 19 (19), 4265 (2019). DOI: 10.3390/s19194265
- Y. Lin, K. Kan, W. Song, G. Zhang, L. Dang, Y. Xie, P. Shen, L. Li, K. Shi. J. Alloys Compounds, 639, (2015). DOI: 10.1016/j.jallcom.2015.03.139
- S.W. Fan, A.K. Srivastava, V.P. Dravid. Appl. Phys. Lett. 95, 142106 (2009). DOI: 10.1063/1.3243458
- Q. Geng, Z. He, X. Chen, W. Dai, X. Wang. Sensors and Actuators B: Chemical, 188, 293 (2013) DOI: 10.1016/j.snb.2013.07.001
- L. Han, D. Wang, Y. Lu, T. Jiang, B. Liu, Y. Lin. J. Phys. Chem. C, 115 (46), 22939 (2011). DOI: 10.1021/jp206352u
- A.S. Chizhov, M.N. Rumyantseva, R.B. Vasiliev, D.G. Filatova, K.A. Drozdov, I.V. Krylov, A.V. Marchevsky, O.M. Karakulina, A.M. Abakumov, A.M. Gaskov. Thin Solid Films, 618, 253 (2016). DOI: 10.1016/j.tsf.2016.09.029
- E. Comini, C. Baratto, G. Faglia, M. Ferroni, A. Vomiero, G. Sberveglieri. Progress in Mater. Sci., 54 (1), 1 (2009). DOI: 10.1016/j.pmatsci.2008.06.003
- S. Wang, Z.X. Lin, W.H. Wang, C.L. Kuo, K.C. Hwang, C.C. Hong. Sensors and Actuators B: Chemical, 194, 1 (2014). DOI: 10.1016/j.snb.2013.12.042
- J.D. Prades, R. Jimenez-Di az, F. Hernandez-Ramirez, S. Barth, A. Cirera, A. Romano-Rodriguez, S. Mathur, J.R. Morante. Sensors and Actuators B: Chemical, 140 (2), 337 (2009). DOI: 10.1016/j.snb.2009.04.070
- M. Procek, T. Pustelny, A. Stolarczyk. Nanomaterials, 6 (12), 227 (2016). DOI: 10.3390/nano6120227
- Y. Sahin, S. Ozturk, N. Ki li nc, A. Kosemen, M. Erkovan, Z.Z. Ozturk. Appl. Surf. Sci., 303, 90 (2014). DOI: 10.1016/j.apsusc.2014.02.083
- L. Peng, J. Zhai, D. Wang, Y. Zhang, P. Wang, Q. Zhao, T. Xie. Sens. Actuator B, 148, 66 (2010). DOI: 10.1016/j.snb.2010.04.045
- A.A. Ryabko, S.S. Nalimova, D.S. Mazing, O.A. Korepanov, A.M. Guketlov, O.A. Aleksandrova, A.I. Maximov, V.A. Moshnikov, Z.V. Shomakhov, A.N. Aleshin. Tech. Phys., 92 (6) 717 (2022). DOI: 10.21883/TP.2022.06.54418.15-22
- J. Guo, J. Zhang, M. Zhu, D. Ju, H. Xu, B. Cao. Sensors and Actuators B: Chemical, 199, 339 (2014). DOI: 10.1016/j.snb.2014.04.010
- M.-W. Ahn, K.-S. Park, J.-H. Heo, J.-G. Park, D.-W. Kim, K.J. Choi, J.-H. Lee, S.-H. Hong. Appl. Phys. Lett., 93, 263103 (2008). DOI: 10.1063/1.3046726
- A. Ejsmont, J. Goscianska. Materials, 16 (4), 1641 (2023). DOI: 10.3390/ma16041641
- S. Barauh, J. Dutta. Sci. Technol. Adv. Mater., 10, 013001 (2009). DOI: 10.1088/1468-6996/10/1/013001
- S. Xu, Z.L. Wang. Nano Research, 4, 1013 (2011). DOI: 10.1007/s12274-011-0160-7
- S.F. Wang, T.Y. Tseng, Y.R. Wang, C.Y. Wang, H.C. Lu, W.L. Shih. Intern. J. Appl. Ceramic Technol., 5 (5), 419 (2008). DOI: 10.1111/j.1744-7402.2008.02242.x
- A.A. Ryabko, A.I. Maksimov, V.A. Moshnikov. Vestnik NovGU, 6 (104), 32 (2017). DOI: 10.34680/2076-8052.2019.4(116).40-43
- S.A. Kadinskaya, V.M. Kondratev, I.K. Kindyushov, O.Y. Koval, D.I. Yakubovsky, A. Kusnetsov, A.I. Lihachev, A.V. Nashchekin, I.K. Akopyan, A.Y. Serov, M.E. Labzovskaya,; S.V. Mikushev, B.V. Novikov, I.V. Shtrom, A.D. Bolshakov. Nanomaterials, 13 (1), 58 (2023). DOI: 10.3390/nano13010058
- H.E. Unalan, P. Hiralal, N. Rupesinghe, S. Dalal, W. Milne, G. Amaratunga. Nanotechnology, 19, 255608 (2008). DOI: 10.1088/0957-4484/19/25/255608
- C. Chevalier-Cesar, M. Capochichi-Gnambodoe, Y. Leprince-Wang. Appl. Phys. A, 115, 953 (2014). DOI: 10.1007/s00339-013-7908-8
- X.M. Sun, X. Chen, Z.X. Deng, Y.D. Li. Mater. Chem. Phys., 78 (1), 99 (2003). DOI: 10.1016/S0254-0584(02)00310-3
- N. Permiakov, E. Maraeva, A. Bobkov, R. Mbwahnche, V. Moshnikov. Technologies, 11 (1), 26 (2023). DOI: 10.3390/technologies11010026
- A.A. Ryabko, A.A. Bobkov, S.S. Nalimova, A.I. Maksimov, V.S. Levitskii, V.A. Moshnikov, E.I. Terukov. Tech. Phys., 67 (5), 644 (2022). DOI: 10.21883/TP.2022.05.53683.314-21
- S. Iaiche; A. Djelloul. J. Spectrosc., 2015, 836859 (2015). DOI: 10.1155/2015/836859
- I.A. Pronin, I.A. Averin, A.A. Karmanov, N.D. Yakushova, A.S. Komolov, E.F. Lazneva, M.M. Sychev, V.A. Moshnikov, G. Korotcenkov. Nanomaterials, 12, 1924 (2022). DOI: 10.3390/nano12111924
- M. Kwoka, A. Kulis-Kapuscinska, D. Zappa, E. Comini, J. Szuber. Nanotechnology, 31 (46), 465705 (2020). DOI: 10.1088/1361-6528/ab8dec
- R. Al-Gaashani, S. Radiman, A.R. Daud, N. Tabet, Y. Al-Douri. Ceram. Int., 39, 2283 (2013). DOI: 10.1016/j.ceramint.2012.08.075
- E. Gr nas, M. Busch, B. Arndt, M. Creutzburg, G.D.L. Semione, J. Gustafson, A. Schaefer, V. Vonk, H. Gro nbeck, A. Stierle. Commun. Chem., 4, 7 (2021). DOI: 10.1038/s42004-020-00442-6
- R. Heinhold, M.W. Allen. J. Mater. Res., 27 (17), 2214 (2012). DOI: 10.1557/jmr.2012.181
- X. Zhang, J. Qin, Y. Xue, P. Yu, B. Zhang, L. Wang, R. Liu. Scientific Feports, 4 (1), 1 (2014). DOI: 10.1038/srep04596
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.