Changes of the crystalline texture and resistivity of Ti films under ion bombardment
Selyukov R. V.
1, Amirov I. I.
1, Izyumov M. O.
1, Naumov V. V.
1, Mazaletskiy L. A.
21Valiev Institute of Physics and Technology of RAS, Yaroslavl Branch, Yaroslavl, Russia
2Demidov State University, Yaroslavl, Russia
Email: ildamirov@yandex.ru, vvnau@rambler.ru, rvselyukov@mail.ru
Crystalline texture, microstructure and resistivity of ion irradiated 12-41 nm Ti films are investigated. Ion bombardment was carried out in Ar plasma by applying negative bias 20-30 V to the films. It is found that this treatment leads to the formation of [100] texture in films having initially mixed [100] + [001] texture. The less the film thickness and the higher the bias the less treatment time is required for the [100] texture formation. Ion irradiation of 12 and 22 nm films using bias 30 V leads to the increase of interplanar distances in surface normal direction by 3% and the decrease of film resistivity by 14-20%. Keywords: thin films, titanium, ion bombardment, plasma, crystalline texture, resistivity, X-ray diffraction.
- J.-H. Huang, Ch.-H. Ma, H. Chen. Surf. Coat. Technol., 200, 5937 (2006). DOI: 10.1016/j.surfcoat.2005.09.005
- W. Zhang, L. Yi, J. Tu, P. Chang, D. Mao, J. Wu. J. Electron. Mater., 34, 1307 (2005). DOI: 10.1007/s11664-005-0254-7
- D.M. Li, F. Pan, J.B. Niu, M. Liu. J. Electron. Mater., 34, 1053 (2005). DOI: 10.1007/s11664-005-0095-4
- S. Okasha, Y. Sekine, S. Sasaki, Y. Harada. Thin Solid Films, 732, 138784 (2021). DOI: 10.1016/j.tsf.2021.138784
- J. Xiong, H.-Sh. Gu, K. Hu, M.-Z. Hu. Int. J. Miner. Metall. Mater., 17, 98 (2010). DOI: 10.1007/s12613-010-0117-y
- A.T. Tran, O. Wunnicke, G. Pandraud, M.D. Nguyen, H. Schellevis, P.M. Sarro. Sens. Act. A Phys., 202, 118 (2013). DOI: 10.1016/j.sna.2013.01.047
- M.A. Signore, A. Taurinoa, M. Catalano, M. Kim, Z. Che, F. Quaranta, P. Siciliano. Mater. Des., 119, 151 (2017). DOI: 10.1016/j.matdes.2017.01.035
- R. Toyama, S. Kawachi, J. Yamaura, Y. Murakami, H. Hosono, Y. Majima. Jpn. J. Appl. Phys., 59, 075504 (2020). DOI: 10.35848/1347-4065/ab9627
- K.A. Vorotilov, O.M. Zhigalina, V.A. Vasil'ev, A.S. Sigov. Phys. Solid State, 51 (7), 1337 (2009). DOI: 10.1134/S106378340907004X
- A.K. Sahoo, J.A. Chelvane, J. Mohanty. J. Mater. Sci.: Mater. Electron., 32, 7567 (2021). DOI: 10.1007/s10854-021-05471-y
- D.L. Ma, Y.T. Li, Q.Y. Deng, B. Huang, Y.X. Leng, N. Huang. Int. J. Mod. Phys. B, 33, 1940017 (2019). DOI: 10.1142/S0217979219400174
- M.J. Jung, K.H. Nam, L.R. Shaginyan, J.G. Han. Thin Solid Films, 435, 145 (2003). DOI: 10.1016/S0040-6090(03)00344-4
- W. Zhang, L. Yi, K.T. Yue, M. P. Chang, J. Wu. J. Mater. Sci: Mater. Electron., 17, 931 (2006). DOI: 10.1007/s10854-006-0046-8
- Y.-L. Liu, F. Liu, Q. Wu, A.-Y. Chen, X. Li, D. Pan. Trans. Nonferrous Met. Soc. China, 24, 2870 (2014). DOI: 10.1016/S1003-6326(14)63420-8
- B.G. Priyadarshini, Sh. Aich, M. Chakraborty. Bull. Mater. Sci., 37, 1691 (2014). DOI: 10.1007/s12034-014-0722-x
- B. Wu, Y. Yu, J. Wu, I. Shchelkanov, D.N. Ruzic, N. Huang, Y.X. Leng. Vacuum, 150, 144 (2018). DOI: 10.1016/j.vacuum.2018.01.039
- Y. He, J. Zhang, W. Yao, D. Li, X. Teng. Appl. Surf. Sci., 255, 4484 (2009). DOI: 10.1016/j.apsusc.2008.11.053
- K. Kamoshida, Y. Ito. J. Vac. Sci. Technol. B, 15, 961 (1997). DOI: 10.1116/1.589515
- A.S. Babushkin, I.V. Uvarov, I.I. Amirov. Tech. Phys., 63 (12), 1800 (2018). DOI: 10.1134/S1063784218120228
- R.V. Selyukov, I.I. Amirov, V.V. Naumov. Russ. Microelectron., 51 (6), 488 (2022). DOI: 10.1134/S1063739722700081
- I.I. Amirov, R.V. Selyukov, V.V. Naumov, E.S. Gorlachev. Russ. Microelectron., 50 (1), 1 (2021). DOI: 10.1134/S1063739721010030
- R.V. Selyukov, M.O. Izyumov, V.V. Naumov, L.A. Mazaletskiy. Tech. Phys. Lett., 48 (15), 25 (2021). DOI: 10.21883/TPL.2022.15.53816.18890
- I.I. Amirov, M.O. Izyumov, V.V. Naumov. J. Surf. Investig., 10 (4), 855 (2016). DOI: 10.1134/S1027451016040236
- I.I. Amirov, M.O. Izyumov, V.V. Naumov, E.S. Gorlachev. J. Phys. D: Appl. Phys., 54, 065204 (2021). DOI: 10.1088/1361-6463/abc3ed
- R. Delhez, E.J. Mittemeijer. J. Appl. Cryst., 8, 609 (1975). DOI: 10.1107/S0021889875011466
- W.E. Sweeney Jr., R.E. Seebold, L.S. Birks. J. Appl. Phys., 31, 1061 (1960). DOI: 10.1063/1.1735746
- R.R. Pawar, V.T. Deshpande. Acta Cryst., A24, 316 (1968). DOI: 10.1107/S0567739468000525
- J. Kong, H. Shen, B. Chen, Z. Li, W. Shi, W. Yao, Zh. Qi. Thin Solid Films, 207, 51 (1992). DOI: 10.1016/0040-6090(92)90100-P
- R. Banerjee, E.A. Sperling, G.B. Thompson, H.L. Fraser, S. Bose, P. Ayyub. Appl. Phys. Lett., 82, 4250 (2003). DOI: 10.1063/1.1582361
- D. Hazra, S. Datta, M. Mondal, J. Ghatak, P.V. Satyam, A.K. Gupta. J. Appl. Phys., 103, 103535 (2008). DOI: 10.1063/1.2924332
- E.G. Fu, Y.Q. Wang, M. Nastasi. J. Phys. D, 45, 495303 (2012). DOI: 10.1088/0022-3727/45/49/495303
- R. Checchetto. Thin Solid Films, 302, 77 (1997). DOI: 10.1016/S0040-6090(96)09552-1
- J. Chakraborty, K. Kumar, R. Ranjan, S.G. Chowdhury, S.R. Singh. Solid State Phenom., 160, 109 (2010). DOI: 10.4028/www.scientific.net/SSP.160.109
- F.J. Jing, T.L. Yin, K. Yukimura, H. Sun, Y.X. Leng, N. Huang. Vacuum, 86, 2114 (2012). DOI: 10.1016/j.vacuum.2012.06.003
- A. Babushkin, R. Selyukov, I. Amirov. Proc. SPIE, 11022, 1102223 (2019). DOI: 10.1117/12.2521617
- E. Chason, J.W. Shin, S.J. Hearne, L.B. Freund. J. Appl. Phys., 111, 083520 (2012). DOI: 10.1063/1.4704683
- M.E. Day, M. Delfino, J.A. Fair, W. Tsai. Thin Solid Films, 254, 285 (1995). DOI: 10.1016/0040-6090(94)06259-N
- R.V. Selyukov, M.O. Izyumov, V.V. Naumov. J. Surf. Investig., 14 (4), 777 (2020). DOI: 10.1134/S1027451020040321
- F.C. Zumsteg, F.J. Cadieu, S. Marcelja, R.D. Parks. Phys. Rev. Lett., 25, 1204 (1970). DOI: 10.1103/PhysRevLett.25.1204
- R.A. Stager, H.G. Drickamer. Phys. Rev., 133, A830 (1964). DOI: 10.1103/PhysRev.133.A830
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.