Electropulse (spark") plasma sintering of tungsten and W+5%Ni nanopowders obtained by high-energy ball milling
Lantsev E. A. 1, Malekhonova N. V.1, Nokhrin A. V.1, Smetanina K. E.1, Murashov A. A.1, Shcherbak G. V.1, Voronin A. V.1, Atopshev A. A.1
1Lobachevsky University of Nizhny Novgorod, Nizhny Novgorod, Russia
Email: elancev@nifti.unn.ru

PDF
The mechanisms of high-speed sintering of tungsten and W+ 5 wt.% Ni nanopowders obtained by high-energy ball milling (HEBM) have been studied. The phase composition, microstructure parameters, hardness and fracture resistance of the obtained samples were investigated. It is shown that the samples have high relative density, small grain size and increased hardness. It is established that the formation of strong intermetallic phases MexWyCz and MexWy, as well as MeO oxides occurs at SPS of mechanically activated nanopowders. The simultaneous increase in the content of intermetallic phases and reduction of the grain size leads to a non-monotone character of the dependence of the SPS activation energy on the HEBM time. It is shown that the main mechanism of SPS of tungsten W+5 wt.% Ni nanopowders is Coble creep. Keywords: tungsten, mechanical activation, nanopowders, spark plasma sintering, density, grain size, diffusion.
  1. E.C. Green, D.J. Jones, W.R. Pitkin. Symp. Powder Met., 58, 253 (1954)
  2. J. Das, G.A. Rao, S.K. Pabi. Mater. Sci. Eng. A, 527 (29-30), 7841 (2010). DOI: 10.1016/j.msea.2010.08.071
  3. U. Ravi Kiran, A. Sambasiva Rao, M. Sankaranarayana, T.K. Nandy. Int. J. Refract. Hard. Met., 33, 113 (2012). DOI: 10.1016/j.ijrmhm.2012.03.003
  4. G. Parabhu, N.A. Kumar, M. Sankaranarayana, T.K. Nandy. Mater. Sci. Eng. A, 607, 63 (2014). DOI: 10.1016/j.msea.2014.03.130
  5. P.V. Krasovskii, A.V. Samokhin, A.A. Fadeev, M.A. Sinayskiy, S.K. Sigalev. J. Alloys Compd., 250, 265 (2018). DOI: 10.1016/j.jallcom.2018.03.367
  6. M. Tokita. Ceramics, 4 (2), 160 (2021). DOI: 10.3390/ceramics4020014
  7. E. Olevsky, D. Dudina. Field-Assisted Sintering (Springer Int. Publ., 2018), DOI: 10.1007/978-3-319-76032-2
  8. V.N. Chuvildeev, D.V. Panov, M.S. Boldin, A.V. Nokhrin, Yu.V. Blagoveshchensky, N.V. Sakharov, S.V. Shotin, D.N. Kotkov. Acta Astronaut., 109, 172 (2015). DOI: 10.1016/j.actaastro.2014.11.008
  9. L. Ding, D.P. Xiang, Y.Y. Li, C. Li, J.B. Li. Int. J. Refract. Hard. Met., 33, 65 (2012). DOI: 10.1016/j.ijrmhm.2012.02.017
  10. D.P. Xiang, L. Ding, Y.Y. Li, G.B. Chen, Y.W. Zhao. J. Alloys Compd., 562, 19 (2013). DOI: 10.1016/j.jallcom.2013.02.014
  11. V.N. Chuvil'deev, A.V. Nokhrin, M.S. Boldin, G.V. Baranov, N.V. Sakharov, V.Yu. Belov, E.A. Lantsev, A.A. Popov, N.V. Melekhin, Yu.G. Lopatin, Yu.V. Blagoveshchenskiy, N.V. Isaeva. J. Alloys Compd., 773, 666 (2019). DOI: 10.1016/j.jallcom.2018.09.17
  12. X. Li, H. Xin, K. Hu, Y. Li. Transactions of Nonferrous Metals Society of China, 20, 443 (2010). DOI: 10.1016/S1003-6326(09)60160-6
  13. A.M. Bragov, V.N. Chuvil'deev, N.V. Melekhin, A.R. Filippov, A.Y. Konstantinov, N.V. Sakharov. Phys. Mesomech., 22, 307 (2019). DOI: 10.1134/S1029959919040064
  14. A.V. Nokhrin, N.V. Malekhonova, V.N. Chuvil'deev, N.V. Melekhin, A.M. Bragov, A.R. Filippov, M.S. Boldin, E.A. Lantsev, N.V. Sakharov. Metals, 13 (8), 1432 (2023). DOI: 10.3390/met13081432
  15. E. Lang, A. Kapat, T.W. Morgan, J.P. Allain. J. Nucl. Mater., 544, 152672 (2021). DOI: 10.1016/j.jnucmat.2020.152672
  16. L.A. El-Guebaly, W. Setyawan, C.H. Henager Jr, R.J. Kurtz, G.R. Odette. Nucl. Mater. Energy., 29, 101092 (2021). DOI: 10.1016/j.nme.2021.101092
  17. R. Neu, H. Maier, M. Balden, S. Elgeti, H. Gietl, H. Greuner, A. Herrmann, A. Houben, V. Rohde, B. Sieglin, I. Zammuto, ASDEX Uprade Team. Fusion Eng. Des., 124, 450 (2017). DOI: 10.1016/j.fusengdes.2017.01.043
  18. T. Laas, K. Laas, J. Paju, J. Priimets, S. Tokke, B. Vali, V. Shirokova, M. Antonov, V.A. Gribkov, E.V. Demina, V.N. Pimenov, M. Paduch, R. Matulka, M. Akel. Fusion Eng. Des., 151, 111408 (2020). DOI: 10.1016/j.fusengdes.2019.111408
  19. A.A. Mazilkin, B.B. Straumal, S.G. Protasova, M.F. Bulatov, B. Baretzky. Mater. Lett., 192, 101 (2017). DOI: 10.1016/j.matlet.2016.12.049
  20. E.A. Lantsev, N.V. Malekhonova, Y.V. Tsvetkov, Yu.V. Blagoveshchensky, V.N. Chuvildeev, A.V. Nokhrin, M.S. Boldin, P.V. Andreev, K.E. Smetanina, N.V. Isaeva. Inorg. Mater. Appl. Res., 12, 650 (2021). DOI: 10.1134/S2075113321030242
  21. M.N. Rahaman. Ceramic Processing and Sintering. 2nd ed. (Marcel Dekker Inc., NY., 2003)
  22. E.G. Grigoriev. Sb. materialov konferentsii "Aktualnye Problemy Poroshkovogo Materialovedeniya" (Perm, 2018), s. 25. (in Russian)
  23. S. Deng, H. Zhao, R. Li, T. Yuan, L. Li, P. Cao. Powder Technol., 359, 769 (2019). DOI: 10.1016/j.powtec.2019.08.108
  24. S. Deng, R. Li, T. Yuan, P. Cao. S. Xie. Metall. Mater. Trans. A., 50, 2886 (2019)
  25. W.S. Young, I.B. Culter. J. Am. Ceram. Soc., 53, 659 (1970). DOI: 10.1111/j.1151-2916.1970.tb12036.x
  26. V.N. Chuvil'deev, Y.V. Blagoveshchenskiy, A.V. Nokhrin, M.S. Boldin, N.V. Sakharov, N.V. Isaeva, S.V. Shotin, O.A. Belkin, A.A. Popov, E.S. Smirnova, E.A. Lantsev. J. Alloys Compd., 708, 547 (2017). DOI: 10.1016/j.jallcom.2017.03.035
  27. L.N. Larikov, Yu.F. Yurchenko. Diffusion in Metals and Alloys (Naukova dumka, Kiev, 1987)
  28. L.S. Golovkina, A.I. Orlova, A.V. Nokhrin, M.S. Boldin, V.N. Chuvil'deev, N.V. Sakharov, O.A. Belkin, S.V. Belkin, A.Yu. Zelenov. Mater. Chem. Phys., 214, 516 (2018). DOI: 10.1016/j.matchemphys.2018.03.091
  29. G. Lee, J. McKittrick, E. Ivanov, E.A. Olevsky. Int. J. Refract. Met. Hard Mater., 61, 22 (2016). DOI: 10.1016/j.ijrmhm.2016.07.023
  30. S. Deng, J. Li, R. Li, H. Zhao, T. Yuan, L. Li, Y. Zhang. Int. J. Refract. Met. Hard Mater., 93, 105358 (2020). DOI: 10.1016/j.ijrmhm.2020.105358
  31. Yu.R. Kolobov, G.P. Grabovetskaya, K.V.`Ivanov, N.V. Girsova. Phys. Metals Metallography, 91, 532 (2001). (in Russian)
  32. V.N. Chuvildeev. Neravnovesnye granitsy zeren v metallakh. Teoriya i prilozheniya (Fizmatlit, M., 2004) (in Russian)

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru