Auto-oscillation of a low-noise microwave signal in an optoelectronic oscillator with passive optical amplification
Tatsenko I. Yu.
1, Ustinov A. B.
11St. Petersburg State Electrotechnical University “LETI", St. Petersburg, Russia
Email: abitur.tatsenko@mail.ru, ustinov_rus@yahoo.com
A detailed study of an optoelectronic oscillator with passive optical amplification has been carried out. A key feature of studied oscillator circuit is the absence of any optical or microwave amplifiers. The circuit parameters that affect the phase noise are determined. A modified Yao-Maleki model is proposed that more adequately describes the phase noise spectrum of an optoelectronic oscillator without amplifiers. The minimum phase noise obtained was -135 dBc/Hz at a 10 kHz offset from a carrier frequency of 3.5 GHz for a fiber length of 600 m. Dependence of the flicker noise coefficient on the laser power is determined, which makes it possible to characterize more accurately the phase noise of an optoelectronic oscillator with passive optical amplification. Keywords: optical fiber, optoelectronic oscillator, phase-noise, flicker-noise, Yao-Maleki Model.
- A.A. Savchenkov, V.S. Ilchenko, W. Liang, D. Eliyahu, A.B. Matsko, D. Seidel, L. Maleki. Opt. Lett., 35 (10), 1572 (2010). DOI: 10.1364/OL.35.001572
- M.L. Gorodetsky, Opticheskie microrezonatory s gigantskoj dobrotnost'yu (Fizmatlit, Moskva, 2011) (in Russian)
- Y.K. Chembo, D. Brunner, M. Jacquot, L. Larger. Rev. Modern Phys., 91 (3), 035006 (2019). DOI: 10.1103/RevModPhys.91.035006
- A.B. Ustinov, I.Yu. Tatsenko, A.A. Nikitin, A.V. Kondrashov, A.V. Shamrai, A.V. Ivanov. Fotonika, 15, 3 (228) (in Russian). DOI: 10.22184/1993-7296.FRos.2021.15.3.228.237
- A.B. Ustinov, I.Yu. Tatsenko, A.A. Nikitin, A.V. Kondrashov, A.V. Shamrai, A.V. Ivanov. Fotonika, 15, 4 (334) (in Russian). DOI: 10.22184/1993-7296.FRos.2021.15.4.334.346
- X.S. Yao, L. Maleki. Electron. Lett., 30 (18), 1525 (1994). DOI: 10.1049/el:19941033
- M.E. Belkin, A.V. Loparev, Y. Semenova, G. Farrell, A.S. Sigov. Microwave Opt. Technol. Lett., 53 (11), 2474 (2011). DOI: 10.1002/mop.26304
- K. Mikitchuk, A. Chizh, S. Malyshev. IEEE J. Quant. Electron., 52 (10), 5000108 (2016). DOI: 10.1109/JQE.2016.2600408
- X.S. Yao, L. Maleki. JOSA B, 13 (8), 1725 (1996). DOI: 10.1364/JOSAB.13.001725
- I.Yu. Tatsenko, T.K. Legkova, A.V. Ivanov, A.B. Ustinov. Izv. vuzov Rossii. Radioelektron., 23 (4), 48 (2020) (in Russian). DOI: 10.32603/1993-8985-2020-23-4-48-56
- C.W. Nelson, A. Hati, D.A. Howe, W. Zhou. In: 2007 IEEE International Frequency Control Symposium Joint with the 21st European Frequency and Time Forum (Geneva, Switzerland, 2007), DOI: 10.1109/FREQ.2007.4319233
- W. Zhou, O. Okusaga, C.W. Nelson, D.A. Howe, G. Carter. Optoelectron. Integrated Circuits X, 6897, 68970Z (2008). DOI: 10.1117/12.760479
- V.J. Urick, J.D. McKinney, K.J. Williams. Fundamentals of Microwave Photonics. (John Wiley \& Sons, Hoboken, New Jersey, 2015)
- D.B. Leeson. Proceed. IEEE, 54 (2), 329 (1966). DOI: 10.1109/PROC.1966.4682
- E. Rubiola. Phase Noise and Frequency Stability in Oscillators (Cambridge University Press, 2008)
- A.B. Ustinov, A.V. Kondrashov, A.A. Nikitin, V.V. Lebedev, A.N. Petrov, A.V. Shamrai, B.A. Kalinikos. J. Phys.: Conf. Series, 1326 (1), 012015 (2019). DOI: 10.1088/1742-6596/1326/1/012015
- A.B. Ustinov, A.A. Nikitin, V.V. Lebedev, A.A. Serebrennikov, A.V. Shamray, A.V. Kondrashov, B.A. Kalinikos. J. Phys.: Conf. Series, 1038 (1), 012033 (2018). DOI: 10.1088/1742-6596/1038/1/012033
- Y. Liu, T. Hao, W. Li, J. Capmany, N. Zhu, M. Li. Light: Sci. Applications, 7 (1), 38 (2018). DOI: 10.1038/s41377-018-0035-8
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.