M.V. Davidovich1
1Saratov State University, Saratov, Russia
Email: davidovichmv@info.sgu.ru
A model of thermal field emission in nanostructures with several barriers and potential wells between them is presented, based on a strict definition of the shape of the quantum potential and a strict solution of the Schrodinger equation, taking into account the thermal balance and the influence of spatial charge. Vacuum and semiconductor resonant tunneling diode and triode structures with two, three or more electrodes are considered. A formula is given for correcting the quantum potential due to the influence of spatial charge. In general, it is necessary to consider two-way tunneling and heating of electrodes with different temperatures due to current flow. Conditions are considered when the contribution of the reverse current is small, when thermal current or tunnel current can be neglected. The approach can be extended to the non-stationary case. Keywords: resonant tunneling, thermal-field emission, vacuum nanotriode, potential barrier, quantum well.
- D.I. Proskurovsky. Emissionnaya elektronika (Izd-vo TGU, Tomsk, 2010) (in Russian)
- C. Herring, M.H. Nichols. Rev. Mod. Phys., 21 (2), 185 (1949)
- W.B. Nottingham. Thermionic Emission. In: Electron-Emission Gas Discharges I / Elektronen-Emission Gasentladungen I. Encyclopedia of Physics / Handbuch der Physik (Springer, Berlin, Heidelberg, 1956), v. 4/21. DOI: 10.1007/978-3-642-45844-6_1
- G.N. Fursey. Field Emission in Vacuum Micro-Electronics (Kluwer Academic Plenum Publishers, Springer, NY., 2005)
- N. Egorov, E. Sheshin. Field Emission Electronics (Springer Series in Advanced Microelectronics, Springer Nature, 2017), v. 60
- L. Kevin, R.G. Forbes. Surf. Interface Anal., 36, 395 (2004). DOI: 10.1002/sia.1900
- R.G. Forbes. Royal Society Open Science, 6 (12), 190912 (2019). DOI: 10.1098/rsos.190912
- K.L. Jensen. J. Vacuum Sci. Technol. B, 21, 1528 (2003). DOI: 10.1116/1.1573664
- W.W. Dolan, W.P. Dyke. Phys. Rev., 95 (2), 327 (1954). DOI: 10.1103/PHYSREV.95.327
- A. Modinos. Field, Thermionic, and Secondary Electron Emission Spectroscopy (Plenum, NY., 1984)
- E.L. Murphy, R.H. Good. Phys. Rev., 102 (6), 1464 (1956). DOI: 10.1103/PhysRev.102.1464
- S. Christov. Phys. Stat. Sol., 17 (11), 11 (1966). DOI: 10.1002/PSSB.19660170103
- K.L. Jensen, M. Cahay. Appl. Phys. Lett., 88 (15), 154105 (2006). DOI: 10.1063/1.2193776
- K.L. Jensen. J. Appl. Phys., 102, 024911 (2007). DOI: 10.1063/1.2752122
- V. Semet, Ch. Adessi, T. Capron, R. Mouton, Vu Thien Binh. Phys. Rev. B, 75, 045430 (2007). DOI: 10.1103/PhysRevB.75.045430
- K.L. Jensen. A Thermal-Field-Photoemission, Model and Its Application. In: Modern Developments in Vacuum Electron Sources, TAP, 135, 345 (2020). DOI: 10.1007/978-3-030-47291-7_8
- R.G. Forbes. Renewing the Mainstream Theory of Field and Thermal Electron Emission. In: Modern Developments in Vacuum Electron Sources, Springer Nature, ch. 9, 2020. DOI: 10.1007/978-3-030-47291-7_9
- A.B. Petrin. J. Exp. Theor. Phys., 109 (2), 314 (2009). DOI: 10.1134/S1063776109080184
- A.B. Petrin. J. Exp. Theor. Phys., 124 (6), 854 (2017). DOI: 10.1134/S1063776117050156
- K.L. Jensen, M.S. McDonald, M.K. Dhillon, D. Finkenstadt, A. Shabaev, M. Osofsky. J. Vacuum Sci. Technol. B, 40, 022801 (2022). DOI: 10.1116/6.0001656
- S.P. Bugaev, E.A. Litvinov, G.A. Mesyats, D.I. Proskurovskii. Sov. Phys. Usp., 18, 51 (1975). DOI: 10.1070/PU1975v018n01ABEH004693
- M.V. Davidovich, I.S. Nefedov, O.E. Glukhova, M.M. Slepchenkov. J. Appl. Phys., 130, 204301 (2021). DOI: 10.1063/5.0067763
- M.V. Davidovich. Tech. Phys., 67 (9), 1196 (2022)]. DOI: 10.21883/TP.2022.09.54684.257-21
- J. Robertson. Mater. Sci. Eng. R, 37, 129 (2002). DOI: 10.1016/S0927-796X(02)00005-0
- V.I. Khvesyuk, A.S. Scriabin. High Temperature, 55 (3), 428 (2017). DOI: 10.1134/S0018151X17030129
- A.S. Dmitriev, Vvedenie v nanoteplofiziku (BINOM. Laboratoriya znanij, M., 2015) (in Russian)
- Y. Dubi, M. Di Ventra. Rev. Mod. Phys., 83 (1), 131 (2011). DOI: 10.1103/RevModPhys.83.131
- G. Chen, A. Shakouri. Trans. ASME, 124 (4), 242 (2002). DOI: 10.1115/1.1448331
- Y. Ezzahri, K. Joulain, J. Ordonez-Miranda. J. Appl. Phys., 128, 105104 (2020). DOI: 10.1063/5.0017188
- D.G. Cahilla, W.K. Ford, K.E. Goodson, G.D. Mahan, A. Majumdar, H.J. Maris, R. Merlin, S.R. Phillpot. J. Appl. Phys., 93, 793 (2003). DOI: 10.1063/1.1524305
- Y.K. Koh, D.G. Cahill, B. Sun. Phys. Rev. B, 90, 205412 (2014). DOI: 10.1103/PhysRevB.90.205412
- B. Vermeersch, A. Shakouri. Nonlocality in Microscale Heat Conduction. https://arxiv.org/abs/1412.6555 (2014)
- Yu.A. Kruglyak. Nanoelektronika " bottom-up" (Strelbitsky Publishing House, Kiev, 2016) (in Russian)
- R. Tsu, L. Esaki. Appl. Phys. Lett., 22 (11), 562 (1973). DOI: 10.1063/1.1654509 (1973)
- L.L. Chang, L. Esaki, R. Tsu. Appl. Phys. Lett., 24, 593 (1974). DOI: 10.1063/1.1655067
- S.Z. Deng, H.T. Xu, X.G. Zhen, Jun Zhou, Jun Chen, N.S. Xu. Effect of Temperature on Field Emission Properties from Nanoclusters of Tungsten Oxide on Silicon Carbide IEEE/CPMT/SEMI. 28th International Electronics Manufacturing Technology Symposium, 07-11 July 2003, IEEE. DOI: 10.1109/IVMC.2003.1223047
- Y. Arakawa, A. Yariv. IEEE J. Quant. Electron., 22 (9), 1887 (1986). DOI: 10.1109/JQE.1986.1073185
- E.X. Ping, H.X. Jiang. Phys. Rev. B, 40 (17), 11792 (1989). DOI: 10.1103/PhysRevB.40.11792
- O. Pinaud. J. Appl. Phys., 92 (4), 1987 (2002). DOI: 10.1063/1.1494127
- L. Esaki. IEEE J. Quant. Electron., 22 (9), 1611 (1986). DOI: 10.1109/JQE.1986.1073162
- V.F. Elesin. J. Exp. Theor. Phys., 101, 795 (2005). DOI: 10.1134/1.2149060
- V.F. Elesin, Y.V. Kopaev. J. Exp. Theor. Phys., 96, 1149 (2003). DOI: 10.1134/1.1591227
- V.F. Elesin. J. Exp. Theor. Phys., 89, 377 (1999). DOI: 10.1134/1.558994
- V.F. Elesin. J. Exp. Theor. Phys., 85, 264 (1997). DOI: 10.1134/1.558273
- V.F. Elesin. J. Exp. Theor. Phys., 94, 794 (2002). DOI: 10.1134/1.1477905
- V.F. Elesin. J. Exp. Theor. Phys., 117, 950 (2013). DOI: 10.1134/S1063776113130104
- V.F. Elesin. JETP, 118 (6), 951 (2014). DOI: 10.1134/S1063776114060041
- M.V. Davidovich. J. Exp. Theor. Phys. Lett., 110 (7), 472 (2019). DOI: 10.1134/S0370274X19190068
- M.V. Davidovich, R.K. Yafarov. Tech. Phys., 63 (2), 274 (2018). DOI: 10.1134/S106378421802010X
- M.V. Davidovich, R.K. Yafarov. Tech. Phys., 64 (8), 1210 (2019). DOI: 10.21883/JTF.2019.08.47905.402-18
- Yu.A. Chaplygin, V.K. Nevolin, V.A. Petukhov. Dokl. Phys., 56, 1 (2011). DOI: 10.1134/S1028335811010058
- J.G. Simmons. J. Appl. Phys., 34, 1793 (1963). DOI: 10.1063/1.1702682
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.