Effect of low-cycle fatigue on acoustic birefringence in austenitic steel AISI 321
Klyushnikov V. A. 1, Gonchar A.V. 1
1Federal Research Center A.V. Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences, Nizhny Novgorod, Russia
Email: ndt@ipmran.ru

PDF
This paper presents the results of a study of the effect of low-cycle fatigue on acoustic birefringence in austenitic stainless steel AISI 321 at test temperature 20 and 60oC. A model was proposed, which represents acoustic birefringence of entire material as the sum of two separate components for soft matrix of austenite and hard inclusions of α'-martensite. Changes in acoustic birefringence caused by deformation of austenite and martensitic transformation under fatigue were compared using calculations based on the data obtained earlier for uniaxial tension of the same steel. The kinetics of changes in acoustic birefringence of austenite was analyzed with and without taking into account the effect of martensitic transformation. The results have practical importance for the development of ultrasonic techniques for nondestructive evaluation of the state of metastable austenitic steel. Keywords: austenitic stainless steel, test temperature, deformation-induced martensitic transformation, ultrasonic method, acoustic birefringence, eddy current method.
  1. G.B. Olson, M. Cohen. Metall Trans A., 6A, 791 (1975). DOI: 10.1007/bf02672301
  2. J. Singh. J. Mater. Sci., 20 (9), 3157 (1985). DOI: 10.1007/bf00545181
  3. G. Huang, D. Matlock, G. Krauss. Metall. Trans. A, 20, 1239 (1989). DOI: 10.1007/BF02647406
  4. J. Talonen, P. Nenonen, G. Pape, H. Hanninen. Metall. Mater. Trans. A, 36A, 421 (2005). DOI: 10.1007/s11661-006-0220-x
  5. J.A. Lichtenfeld, M.C. Mataya, C.J. van Tyne. Metall. Mater. Trans. A, 37, 147 (2006). DOI: 10.1007/s11661-006-0160-5
  6. T. Angel. J. Iron Steel Inst., 177, 165 (1954)
  7. T. Byun, N. Hashimoto, K. Farrell. Acta Mater., 52, 3889 (2004). DOI: 10.1016/j.actamat.2004.05.003
  8. J. Talonen, H. Hannien. Metall. Mater. Trans. A, 35, 2401 (2004). DOI: 10.1007/s11661-006-0220-x
  9. B.A. Behrens, S. Hubner, A. Bouguecha, J. Knigge, K. Voges-Schwieger, K. Weilandt. Adv. Mat. Res., 137, 1 (2010). DOI: 10.4028/www.scientific.net/AMR.137.1
  10. M. Smaga, F. Walther, D. Eifler. Mat. Sci. Eng. A, 483-484, 394 (2008). DOI: 10.1016/j.msea.2006.09.140
  11. A.K. De, J.G. Speer, D.K. Matlock, D.C. Murdock, M.C. Mataya, R.J. Comstock. Metall. Mater. Trans. A, 37, 1875 (2006). DOI: 10.1007/s11661-006-0130-y
  12. V.V. Mishakin, V.A. Klyushnikov, A.V. Gonchar. Tech. Phys., 60 (5), 665 (2015). DOI: 10.1134/S1063784215050163
  13. A. Rosen, R. Jago, T.J. Kjer. Mater. Sci., 7, 870 (1972). DOI: 10.1007/BF00550434
  14. R. Dey, S. Tarafder, S. Sivaprasad. Int. J. Fatig., 90, 148 (2016). DOI: 10.1016/j.ijfatigue.2016.04.030
  15. V.M.A. Silva, C.G. Camerini, J.M. Pardal, J.C.G. de Blas, G.R. Pereira. J. Mater. Res. Technol., 7, 395 (2018). DOI: 10.1016/j.jmrt.2018.07.002
  16. S. Xie, L. Wu, Z. Tong, H.-En. Chen, Z. Chen, T. Uchimoto, T. Takagi. IEEE Trans. Magn. 54 (8), 1 (2018). DOI: 10.1109/TMAG.2018.2819123
  17. D. O'Sullivan, M. Cotterell, D.A. Tanner, I. Meszaros. NDT \& E Int., 37, 489 (2004). DOI: 10.1016/j.ndteint.2004.01.001
  18. S.H. Khan, F. Ali, A. Nusair Khan, M.A. Iqbal. Comp. Mater. Sci., 43 (4), 623 (2008). DOI: 10.1016/j.commatsci.2008.01.034
  19. C.S. Kim. Strength Mater., 50, 41 (2018). DOI: 10.1007/s11223-018-9940-6
  20. A. Ould Amer, A.-L. Gloanec, S. Courtin, C. Touze. Proc. Eng., 66, 651 (2013). DOI: 10.1016/j.proeng.2013.12.117
  21. V. Mishakin, A. Gonchar, K. Kurashkin, V. Klyushnikov, M. Kachanov. Int. J. Eng. Sci., 168, 103567 (2021). DOI: 10.1016/j.ijengsci.2021.103567
  22. S. Xie, Z. Chen, H.-En. Chen, S. Sato, T. Uchimoto, T. Takagi,Y. Yoshida. Int. J. Appl. Electrom., 45, 755 (2014). DOI: doi.org/10.3233/JAE-141903
  23. M.S. Ogneva, M.B. Rigmant, N.V. Kazantseva, D.I. Davydov, M.K. Korkh. Russ. J. Nondestruct., 53 (9), 644 (2017). DOI: 10.1134/S106183091709008X
  24. M.B. Rigmant, M.K. Korkh, D.I. Davydov, D.A. Shishkin, Yu.V. Korkh, A.P. Nichipuruk, N.V. Kazantseva. Rus. J. Nondestruct Testing, 51 (11), 680 (2015). DOI: 10.1134/S1061830915110030
  25. M. Bayerlein, H.J. Christ, H. Mughrabi. Mat. Sci. Eng. A, 114, L11 (1989). DOI: 10.1016/0921-5093(89)90871-X
  26. H.J. Bassler, D. Eifler, M. Lang, G. Dobmann. Characterization of the Fatigue Behavior of Austenitic Steel Using HTSL-SQUID. In Review of Progress in Quantitative Nondestructive Evaluation (Springer, Boston 1998), DOI: 10.1007/978-1-4615-5339-7_207
  27. A.M. Sherman. Met. Trans. A, 6, 1035(1975). DOI: https://doi.org/10.1007/BF02661357
  28. A. Glage, A. Weidner, T. Richter, P. Trubitz, H. Biermann. Europ. Sympos. on Martens.Transform., 05007 (2009). DOI: 10.1051/esomat/200905007
  29. S.K. Paul, N. Stanford, T. Hilditch. Int. J. Fatig., 106, 185 (2018). DOI: 10.1016/j.ijfatigue.2017.10.005
  30. K.V. Kurashkin, V.V. Mishakin, S.V. Kirikov, A.V. Gonchar, V.A. Klyushnikov. Phys. Mesomech., 25, 80 (2022). DOI: 10.1134/S102995992201009X
  31. V. Klyushnikov. Mat. Today: Proc., 19 (5), 2320 (2019). DOI: 10.1016/j.matpr.2019.07.679
  32. H. Biermann, M. Droste. Austenitic TRIP/TWIP Steels and Steel-Zirconia Composites (Springer, Cham. 2020), DOI: 10.1007/978-3-030-42603-3

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru