Effect of low-cycle fatigue on acoustic birefringence in austenitic steel AISI 321
Klyushnikov V. A.
1, Gonchar A.V.
11Federal Research Center A.V. Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences, Nizhny Novgorod, Russia
Email: ndt@ipmran.ru
This paper presents the results of a study of the effect of low-cycle fatigue on acoustic birefringence in austenitic stainless steel AISI 321 at test temperature 20 and 60oC. A model was proposed, which represents acoustic birefringence of entire material as the sum of two separate components for soft matrix of austenite and hard inclusions of α'-martensite. Changes in acoustic birefringence caused by deformation of austenite and martensitic transformation under fatigue were compared using calculations based on the data obtained earlier for uniaxial tension of the same steel. The kinetics of changes in acoustic birefringence of austenite was analyzed with and without taking into account the effect of martensitic transformation. The results have practical importance for the development of ultrasonic techniques for nondestructive evaluation of the state of metastable austenitic steel. Keywords: austenitic stainless steel, test temperature, deformation-induced martensitic transformation, ultrasonic method, acoustic birefringence, eddy current method.
- G.B. Olson, M. Cohen. Metall Trans A., 6A, 791 (1975). DOI: 10.1007/bf02672301
- J. Singh. J. Mater. Sci., 20 (9), 3157 (1985). DOI: 10.1007/bf00545181
- G. Huang, D. Matlock, G. Krauss. Metall. Trans. A, 20, 1239 (1989). DOI: 10.1007/BF02647406
- J. Talonen, P. Nenonen, G. Pape, H. Hanninen. Metall. Mater. Trans. A, 36A, 421 (2005). DOI: 10.1007/s11661-006-0220-x
- J.A. Lichtenfeld, M.C. Mataya, C.J. van Tyne. Metall. Mater. Trans. A, 37, 147 (2006). DOI: 10.1007/s11661-006-0160-5
- T. Angel. J. Iron Steel Inst., 177, 165 (1954)
- T. Byun, N. Hashimoto, K. Farrell. Acta Mater., 52, 3889 (2004). DOI: 10.1016/j.actamat.2004.05.003
- J. Talonen, H. Hannien. Metall. Mater. Trans. A, 35, 2401 (2004). DOI: 10.1007/s11661-006-0220-x
- B.A. Behrens, S. Hubner, A. Bouguecha, J. Knigge, K. Voges-Schwieger, K. Weilandt. Adv. Mat. Res., 137, 1 (2010). DOI: 10.4028/www.scientific.net/AMR.137.1
- M. Smaga, F. Walther, D. Eifler. Mat. Sci. Eng. A, 483-484, 394 (2008). DOI: 10.1016/j.msea.2006.09.140
- A.K. De, J.G. Speer, D.K. Matlock, D.C. Murdock, M.C. Mataya, R.J. Comstock. Metall. Mater. Trans. A, 37, 1875 (2006). DOI: 10.1007/s11661-006-0130-y
- V.V. Mishakin, V.A. Klyushnikov, A.V. Gonchar. Tech. Phys., 60 (5), 665 (2015). DOI: 10.1134/S1063784215050163
- A. Rosen, R. Jago, T.J. Kjer. Mater. Sci., 7, 870 (1972). DOI: 10.1007/BF00550434
- R. Dey, S. Tarafder, S. Sivaprasad. Int. J. Fatig., 90, 148 (2016). DOI: 10.1016/j.ijfatigue.2016.04.030
- V.M.A. Silva, C.G. Camerini, J.M. Pardal, J.C.G. de Blas, G.R. Pereira. J. Mater. Res. Technol., 7, 395 (2018). DOI: 10.1016/j.jmrt.2018.07.002
- S. Xie, L. Wu, Z. Tong, H.-En. Chen, Z. Chen, T. Uchimoto, T. Takagi. IEEE Trans. Magn. 54 (8), 1 (2018). DOI: 10.1109/TMAG.2018.2819123
- D. O'Sullivan, M. Cotterell, D.A. Tanner, I. Meszaros. NDT \& E Int., 37, 489 (2004). DOI: 10.1016/j.ndteint.2004.01.001
- S.H. Khan, F. Ali, A. Nusair Khan, M.A. Iqbal. Comp. Mater. Sci., 43 (4), 623 (2008). DOI: 10.1016/j.commatsci.2008.01.034
- C.S. Kim. Strength Mater., 50, 41 (2018). DOI: 10.1007/s11223-018-9940-6
- A. Ould Amer, A.-L. Gloanec, S. Courtin, C. Touze. Proc. Eng., 66, 651 (2013). DOI: 10.1016/j.proeng.2013.12.117
- V. Mishakin, A. Gonchar, K. Kurashkin, V. Klyushnikov, M. Kachanov. Int. J. Eng. Sci., 168, 103567 (2021). DOI: 10.1016/j.ijengsci.2021.103567
- S. Xie, Z. Chen, H.-En. Chen, S. Sato, T. Uchimoto, T. Takagi,Y. Yoshida. Int. J. Appl. Electrom., 45, 755 (2014). DOI: doi.org/10.3233/JAE-141903
- M.S. Ogneva, M.B. Rigmant, N.V. Kazantseva, D.I. Davydov, M.K. Korkh. Russ. J. Nondestruct., 53 (9), 644 (2017). DOI: 10.1134/S106183091709008X
- M.B. Rigmant, M.K. Korkh, D.I. Davydov, D.A. Shishkin, Yu.V. Korkh, A.P. Nichipuruk, N.V. Kazantseva. Rus. J. Nondestruct Testing, 51 (11), 680 (2015). DOI: 10.1134/S1061830915110030
- M. Bayerlein, H.J. Christ, H. Mughrabi. Mat. Sci. Eng. A, 114, L11 (1989). DOI: 10.1016/0921-5093(89)90871-X
- H.J. Bassler, D. Eifler, M. Lang, G. Dobmann. Characterization of the Fatigue Behavior of Austenitic Steel Using HTSL-SQUID. In Review of Progress in Quantitative Nondestructive Evaluation (Springer, Boston 1998), DOI: 10.1007/978-1-4615-5339-7_207
- A.M. Sherman. Met. Trans. A, 6, 1035(1975). DOI: https://doi.org/10.1007/BF02661357
- A. Glage, A. Weidner, T. Richter, P. Trubitz, H. Biermann. Europ. Sympos. on Martens.Transform., 05007 (2009). DOI: 10.1051/esomat/200905007
- S.K. Paul, N. Stanford, T. Hilditch. Int. J. Fatig., 106, 185 (2018). DOI: 10.1016/j.ijfatigue.2017.10.005
- K.V. Kurashkin, V.V. Mishakin, S.V. Kirikov, A.V. Gonchar, V.A. Klyushnikov. Phys. Mesomech., 25, 80 (2022). DOI: 10.1134/S102995992201009X
- V. Klyushnikov. Mat. Today: Proc., 19 (5), 2320 (2019). DOI: 10.1016/j.matpr.2019.07.679
- H. Biermann, M. Droste. Austenitic TRIP/TWIP Steels and Steel-Zirconia Composites (Springer, Cham. 2020), DOI: 10.1007/978-3-030-42603-3
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.