Reactive magnetron synthesis and study of the structure and optical properties of thin-film tungsten oxide doped with molybdenum
Malikov I. F.1,2, Lyadov N. M. 1, Salakhov M. Kh. 2, Tagirov L. R. 1
1Zavoisky Physical-Technical Institute, FRC KazSC of RAS, Kazan, Russia
2Institute of Physics, Kazan Federal University, Kazan, Russia
Email: insaf.malikov@gmail.com, nik061287@mail.ru, mkhsalakhov@gmail.com, ltagirov@mail.ru

PDF
Cationic doping of tungsten oxide with molybdenum was applied to obtain an electrochromic cathode material, the spectral transmission of which can be controlled by the doping level. A series of samples was synthesized by reactive magnetron co-sputtering of metalic tungsten and molybdenum in a mixture of argon and oxygen gases. Morphology, structure, elemental and valence composition of constituent elements of the films were characterized by scanning electron microscopy, X-ray diffraction, energy-dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy. Optical properties were measured using transmission spectrophotometry and spectroscopic ellipsometry. With an increase in the doping level, the resulting films acquire a gray color and become low-transparent. The ellipsometric studies have shown that enhancement of the absorption occurs both in the short-wavelength and long-wavelength parts of the visible light and adjacent parts of the spectrum. This leads to a mutual compensation of colorings, resulting in an almost achromatic change in the optical transmission and thus improving the consumer qualities of the electrochemical material and devices based on tungsten oxide. Keywords: electrochromism, tungsten trioxide, doping with molybdenum, optical transmission, spectroscopic ellipsometry.
  1. S.K. Deb. Appl. Opt., 8, 192 (1969). DOI: 10.1364/AO.8.S1.000192
  2. C.G. Granqvist. Handbook of Inorganic Electrochromic Materials (Elsevier, Amsterdam, 2002)
  3. P.M. Monk, R.J. Mortimer, D.R. Rosseinsky. Electrochromism and Electrochromic Devices (Cambridge University Press, Cambridge, 2007), v. 421. www.cambridge.org/9780521822695
  4. G.A. Niklasson, C.G. Granqvist. J. Mater. Chem., 17, 127 (2007). DOI: 10.1039/B612174H
  5. T. He, J. Yao. J. Mater. Chem., 17, 4547 (2007). DOI: 10.1039/B709380B
  6. D.T. Gillaspie, R.C. Tenent, A.C. Dillon. J. Mater. Chem., 20, 9585 (2010). DOI: 10.1039/c0jm00604a
  7. A.L. Belousov, T.N. Patrusheva. J. Siberian Federal University. Eng. Technol., 7, 154 (2014)
  8. C.G. Granqvist. Mater. Today: Proceed., 3, S2 (2016). DOI: 10.1016/j.matpr.2016.01.002
  9. V.A. Maiorov. Opt. Spectrosc., 126, 412 (2019). DOI: 10.1134/S0030400X19040143
  10. Sh. Zeb, G. Sun, Y. Nie, H. Xu, Y. Cui, X. Jiang. Mater. Adv., 2, 6839 (2021). DOI: 10.1039/D1MA00418B
  11. C.G. Granqvist. Eco-Efficient Materials for Reducing Cooling Needs in Buildings and Construction. Design, Properties and Applications, ed. by F. Pacheco-Torgal, L. Czarnecki, A.L. Pisello, L.F. Cabeza (Elsevier, Amsterdam, 2021)
  12. Electronic media. Available at: http://database.iem. ac.ru/mincryst/s_carta.php?OXIDE_W+3412
  13. I.F. Malikov, N.M. Lyadov, M.Kh. Salakhov, L.R. Tagirov. Crystals (MDPI), 14, 109 (2024). DOI: 10.3390/cryst14020109
  14. R.R. Kharade, S.S. Mali, S.S. Mohite, V.V. Kondalkar, P.S. Patil, P.N. Bhosale. Electroanalysis, 26, 2388 (2014). DOI: 10.1002/elan.201400239
  15. A. Esmaeili, I.V. Yanilkin, A.I. Gumarov, I.R. Vakhitov, B.F. Gabbasov, A.G. Kiiamov, A.M. Rogov, Yu.N. Osin, A.E. Denisov, R.V. Yusupov, L.R. Tagirov. Thin Solid Films, 669, 338 (2019). DOI: 10.1016/j.tsf.2018.11.015
  16. A.I. Gumarov, I.V. Yanilkin, R.V. Yusupov, A.G. Kiiamov, L.R. Tagirov, R.I. Khaibullin. Mater. Lett., 305, 130783 (2021). DOI: 10.1016/j.matlet.2021.130783
  17. O. Bouvard, A. Krammer, A. Schuler. Surf. Interface Anal., 48, 660 (2016). DOI: 10.1002/sia.5927
  18. B. Yang, P. Miao. J. Cui. J. Mater. Sci.: Mater. Electron., 31, 11071 (2020). DOI: 10.1007/s10854-020-03656-5
  19. H.T.T. Nguyen, Th.H. Truong, T.D. Nguyen, V.Th. Dang, T.V. Vu, S.T. Nguyen, X.Ph. Cu, Th.T.O. Nguyen. J. Mater. Sci.: Mater. Electron., 31, 12783 (2020). DOI: 10.1007/s10854-020-03830-9
  20. S. Xie, D. Chen, Ch. Gu, T. Jiang, Sh. Zeng, Y.Y. Wang, Zh. Ni, X. Shen, J. Zhou. ACS Appl. Mater. Interfaces, 13, 33345 (2021). DOI: 10.1021/acsami.1c03848
  21. Q. Han, R. Wang, H. Zhu, M. Wan, Ya. Mai. Mater. Sci. Semicond. Process., 126, 105686 (2021). DOI: 10.1016/j.mssp.2021.105686
  22. J. Liu, S. Tang, Y. Lu, G. Cai, Sh. Liang, W. Wang, X. Chen. Energy Environ. Sci., 6, 2691 (2013). DOI: 10.1039/c3ee41006d
  23. M. Righettoni, S.E. Pratsinis. Mater. Res. Bull., 59, 199 (2014). http://dx.doi.org/10.1016/j.materresbull.2014.07.018
  24. J. Ram, R.G. Singh, R. Gupta, V. Kumar, F. Singh, R. Kumar. J. Electron. Mater., 48, 1174 (2019). DOI: 10.1007/s11664-018-06846-4

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru