Analysis of internal structure management methods for binary nanoparticles Ag-Cu
Gafner S. L.
1, Gafner Yu.Ya.
1, Poletaev G. M.
1,2, Ryzhkova D. A.
1, Cherepovskaya A. A.
11Katanov Khakassian State University, Abakan, Russia
2Polzunov Altai State Technical University, Barnaul, Russia
Email: sgafner@rambler.ru, ygafner@khsu.ru, gmpoletaev@mail.ru, bashkova.daria@yandex.ru, arina.cherepovskaya@mail.ru
Binary nanoparticles of a copper and silver alloy are of great practical interest due to the possibility of fine-tuning their physicochemical properties by changing the composition, size, shape and structure of the nanoparticles. In the presented work, the processes of formation of the internal structure of Ag-Cu nanoparticles with a diameter of 2.0-8.0 nm during their crystallization were studied using the molecular dynamics method. The features of this process were found depending on the target chemical composition of nanoparticles, their size and the intensity of thermal energy removal. Based on the analysis of available experimental data and the results of computer modeling, it was concluded that it is possible to control the internal structure and shape of Ag-Cu nanoparticles. In particular, it was shown that as a result of crystallization of binary Ag-Cu nanoparticles from a melt, metastable states that are quite stable at room temperature are captured. Keywords: binary alloys, copper, silver, nanoparticles, structure, molecular dynamics, tight-binding.
- R. Ferrando, A. Fortunelli, G. Rossi. Phys. Rev. B 72, 085449 (2005)
- Zh. Lia, X. Yanga, Ch. Liua, J. Wanga, G. Li. Prog. Nature Sci.: Mater. Int. 26, 477 (2016)
- D. Bochicchio, R. Ferrando, E. Panizon, G. Rossi. J. Phys.: Condens. Matter 28, 064005 (2016)
- M. Khan, Kh. Al-hamoud, Z. Liaqat, M.R. Shaik, S.F. Adil, M. Kuniyil, H.Z. Alkhathlan, A. Al-Warthan, M. Rafiq H. Siddiqui, M. Mondeshki, W. Tremel, M. Khan, M.N. Tahir. Nanomaterials 10, 1885 (2020)
- K. Shin, D.H. Kim, S.C. Yeo, H.M. Lee. Catal. Today 185, 94 (2012)
- S.J. Kim, E.A. Stach, C.A. Handwerker. Appl. Phys. Lett. 96, 144101 (2010)
- E. Panizon, D. Bochicchio, G. Rossi, R. Ferrando. Chem. Mater 26, 3354 (2014)
- D. Nelli, El Yakout El Koraychy, M. Cerbelaud, B. Crespin, A. Videcoq, A. Giacomello, R. Ferrando. ACS Nano 17, 587 (2023)
- D. Rapetti, C. Roncaglia, R. Ferrando. Adv. Theory Simul. 6, 2300268 (2023)
- D. Nelli, R. Ferrando. Nanoscale 11, 13040 (2019)
- I.K. Razumov, Yu.N. Gornostyrev. FTT 61, 2462 (2019). (in Russian)
- D.M. Wells, G. Rossi, R. Ferrando, R.E. Palmer. Nanoscale 7, 6498 (2015)
- Y. Xia, X. Xia, H.-C. Peng. J. Am. Chem. Soc. 137, 7947 (2015)
- J. Zhao, E. Baibuz, J. Vernieres, P. Grammatikopoulos, V. Jansson, M. Nagel, S. Steinhauer, M. Sowwan, A. Kuronen, K. Nordlund, F. Djurabekova. ACS Nano 10, 4684 (2016)
- D.M. Foster, R. Ferrando, R.E. Palmer. Nature. Commun. 9, 1323 (2018)
- T. Wen, K.M. Krishnan. J. Phys. Chem. C 114, 14838 (2010)
- P. Andreazza, C. Mottet, C. Andreazza-Vignolle, J. Penuelas, H. Tolentino, M.D. Santis, R. Felici, N. Bouet. Phys. Rev. B 82, 155453 (2010)
- S. Liu, Z. Sun, Q. Liu, L. Wu, Y. Huang, T. Yao, J. Zhang, T. Hu, M. Ge, F. Hu, Z. Xie, G. Pan, S. Wei. ACS Nano 8, 1886 (2014)
- V. Dupuis, A. Hillion, A. Robert, O. Loiselet, G. Khadra, P. Capiod, C. Albin, O. Boisron, D. Le Roy, L. Bardotti, F. Tournus, A. Tamion. J. Nanopart. Res. 20, 128 (2018)
- M. Schnedlitz, M. Lasserus, R. Meyer, D. Knez, F. Hofer, W.E. Ernst, A.W. Hauser. Chem. Mater. 30, 1113 (2018)
- T.-W. Liao, A. Yadav, K.-J. Hu, J. van der Tol, S. Cosentino, F. D'Acapito, R.E. Palmer, C. Lenardi, R. Ferrando, D. Grandjean, P. Lievens. Nanoscale 10, 6684 (2018)
- F. Berthier, A. Tadjine, B. Legrand. Phys. Chem. Chem. Phys. 17, 28193 (2015)
- A. Rapallo, G. Rossi, R. Ferrando, A. Fortunelli, B.C. Curley, L.D. Lloyd, R.L. Johnston. J. Chem. Phys. 122, 19, 194308 (2005)
- S.V. Dubkov, A.I. Savitskiy, A.Yu. Trifonov, G.S. Yeritsyan, Yu.P. Shaman, E.P. Kitsyuk, A. Tarasov, O. Shtyka, R. Ciesielski, D.G. Gromov. Opt. Mater. X 7, 100055 (2020)
- D.G. Gromov, S.V. Dubkov, A.I. Savitskiy, Yu.P. Shaman, A.A. Polokhin, I.A. Belogorokhov, A.Yu. Trifonov. Appl. Surf. Sci. 489, 701 (2019)
- Y. Gafner, S. Gafner, L. Redel, I. Zamulin. J. Nanopart. Res. 20, 2, 51 (2018)
- A.Yu. Stroev, O.I. Gorbatov, Yu.N. Gornostyrev, P.A. Korzhavyi. Comput. Mater. Sci. 218, 111912 (2023)
- E. Panizon, D. Bochicchio, G. Rossi, R. Ferrando. Chem. Mater 26, 3354 (2014)
- D. Shechtman, I. Blech, D. Gratias, J.W. Cahn. Phys. Rev. Lett. 53, 1951 (1984)
- S.L. Gafner, Yu.Ya. Gafner. ZhETF 134, 4( 10), 831 (2008). (in Russian)
- Yu.Ya. Gafner, S.L. Gafner, P. Entel'. FTT 46, 7, 1287 (2004). (in Russian)
- S.L. Gafner, L.V. Redel', Yu.Ya. Gafner. FMM 104, 2, 189 (2007). (in Russian)
- Y.Ya. Gafner, S.L. Gafner, D.A. Ryzkova, A.V. Nomoev. Beilstein J. Nanotechnology 12, 72 (2021)
- I.V. Chepkasov, Yu.Ya. Gafner, S.L. Gafner. J. Aerosol Sci. 91, 33 (2016)
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.