Physics of the Solid State
Volumes and Issues
Atomic and electronic structure of nitrogen-doped nano-graphene clusters by combined XPS and XAFS analysis
Tolchina D. B. 1, Avakyan L. A. 1, Srabionyan V. V. 1, Gyulasaryan H.2, Kozakov A. T. 3, Nikolskiy A. V.3, Emelyanov A. V.4, Chumakov R. G. 4, Sharoyan E. G.2, Manukyan A. S.2, Bugaev L. A.1
1Southern Federal University, Rostov-on-Don, Russia
2The Institute for Physical Research of National Academy of Sciences of Armenia, Ashtarak, Armenia
3Southern Federal University, Research Institute of Physics, Rostov-on-Don, Russia
4National Research Center “Kurchatov Institute”, Moscow, Russia
Email: shemetdabo@mail.ru, laavakyan@sfedu.ru, vvsrab@sfedu.ru, atkozakov@sfedu.ru, bugaev@sfedu.ru, Chumkov_rg@nrcki.ru

PDF
Changes in the local structure of nitrogen-containing carbon samples obtained by solid-phase pyrolysis of phthalonitrile and phthalocyanine at different pressures have been determined. The structure of carbon microspheres in the samples was studied by transmission electron microscopy. By combined analyzing the N 1s X-ray photoelectronic spectroscopy data (N 1s XPS) and fitting it with experimental N K-edge X-ray absorption near edge structure data (N K-edge XANES) the bond types and atomic structure parameters for the local structure of nitrogen in the synthesised samples have been determined. Bond lengths and angles in nitrogen-containing atomic configurations were determined, including three-atom C-N-C chains for pyridinic and pyrrolic nitrogen, as well as O=N-2C configurations for Quaternary nitrogen (QN) =Quaternary N (QN)=Oxidized N (ON). The percentage of these structural states of nitrogen in the samples and its dependence on the synthesis conditions were determined. Keywords: nitrogen-doped nanographene clusters, solid-phase pyrolysis, XPS, XANES, nitrogen structural states, Pyridine N/Pyrrole N.
  1. J.S. Miller, M. Drillon. Magnetism: Molecules to Materials (2005). V. 1
  2. V.V. Korolev, T.N. Lomova, A.G. Ramazanova. Radioelectron. Nanosystems. Inform. Technologies 11, 199 (2019)
  3. P. Esquinazi, A. Setzer, R. Hohne, C. Semmelhack, Y. Kopelevich, D. Spemann, T. Butz, B. Kohlstrunk, M. Losche. Phys. Rev. B 66, 024429 (2002)
  4. S. Talapatra, P.G. Ganesan, T. Kim, R. Vajtai, M. Huang, M. Shima, G. Ramanath, D. Srivastava, S.C. Deevi, P.M. Ajayan. Phys. Rev. Lett. 95, 097201 (2005)
  5. X. Yang, H. Xia, X. Qin, W. Li, Y. Dai, X. Liu, M. Zhao, Y. Xia, S. Yan, B. Wang. Carbon N.Y. 47, 1399 (2009)
  6. A.L. Friedman, H. Chun, Y.J. Jung, D. Heiman, E.R. Glaser, L. Menon. Phys. Rev. B Condens. Matter Mater. Phys. 81, 115461 (2010)
  7. Y. Liu, N. Tang, X. Wan, Q. Feng, M. Li, Q. Xu, F. Liu, Y. Du. Sci. Rep. 3, 1 (2013)
  8. D. Gao, Y. Liu, M. Song, S. Shi, M. Si, D. Xue. J. Mater. Chem. C 3, 12230 (2015)
  9. X. Zhou, F. Li, Y. Xing, W. Feng. J. Mater. Chem. C 7, 3360 (2019)
  10. L. Du, B. Gao, S. Xu, Q. Xu. Nature Commun. 14, 1 (2023)
  11. A.A. Ovchinnikov, V.N. Spector. Synth Met. 27, 615 (1988)
  12. A. Manukyan, H. Gyulasaryan, A. Kocharian, P. Oyala, R. Chumakov, M. Avramenko, C. Sanchez, O.O. Bernal, L. Bugaev, E. Sharoyan. J. Phys. Chem. C 126, 493 (2022)
  13. A.M. Lebedev, K.A. Menshikov, V.G. Nazin, V.G. Stankevich, M.B. Tsetlin, R.G. Chumakov. J. Surface Investigation: X-Ray, Synchrotron Neutron Techniques 15, 1039 (2021)
  14. Y. Joly. Phys Rev. B 63, 125120 (2001)
  15. T.M. Willey, M. Bagge-Hansen, J.R.I. Lee, R. Call, L. Landt, T. Van Buuren, C. Colesniuc, C. Monton, I. Valmianski, I.K. Schuller. J. Chem. Phys. 139, (2013)
  16. https://cars.uchicago.edu/ifeffit/
  17. S.N. Nesov, P.M. Korusenko, V.V. Bolotov, S.N. Povoroznyuk, D.A. Smirnov. FTT 59, 2006 (2017). (in Russian)
  18. H. Wang, T. Maiyalagan, X. Wang, ACS Catal. 2, 781 (2012)
  19. J. Li, X. Li, P. Zhao, D.Y. Lei, W. Li, J. Bai, Z. Ren, X. Xu. Carbon (N.Y.) 84, 460 (2015)
  20. Q. Miao, L. Wang, Z. Liu, B. Wei, F. Xu, W. Fei. Sci. Rep. 6, 1 (2016)
  21. X. Li, H. Wang, J.T. Robinson, H. Sanchez, G. Diankov, H. Dai. J. Am. Chem. Soc. 131, 15939 (2009)
  22. C. Weidenthaler, A.H. Lu, W. Schmidt, F. Schuth. Micropor. Mesopor. Mater. 88, 238 (2006)
  23. K. Artyushkova, S. Levendosky, P. Atanassov, J. Fulghum. Top Catal. 46, 263 (2007)
  24. L.F. Chen, X.D. Zhang, H.W. Liang, M. Kong, Q.F. Guan, P. Chen, Z.Y. Wu, S.H. Yu. ACS Nano 6, 7092 (2012)
  25. R. Ohta, K.H. Lee, N. Saito, Y. Inoue, H. Sugimura, O. Takai. Thin Solid Films 434, 296 (2003)
  26. K.G. Latham, M.I. Simone, W.M. Dose, J.A. Allen, S.W. Donne. Carbon (N.Y.) 114, 566 (2017)
  27. V.V. Srabionyan, G.B. Sukharina, T.I. Kurzina, V.A. Durymanov, A.M. Ermakova, L.A. Avakyan, E.M.C. Alayon, M. Nachtegaal, J.A. Van Bokhoven, L.A. Bugaev. J. Phys. Chem. C 125, 25867 (2021)
  28. V.V. Srabionyan, L.A. Avakyan, V.A. Durymanov, D.S. Rubanik, I.A. Viklenko, A.V. Skunova, L.A. Bugaev. J. Phys. Chem. Solids 179, 111412 (2023)
  29. J.A. van Bokhoven, C. Lamberti. X-ray absorption and X-ray emission spectroscopy: theory and applications. https://www.wiley.com/en-ie/X+Ray+Absorption+and+X+ Ray+Emission+Spectroscopy3A+Theory+and+ Applications-p-9781118844236 (accessed May 7, 2023)
  30. M. Nagasaka, H. Yuzawa, N. Kosugi. Z. Physikalische Chem. 232, 705 (2018).

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru