Calculation of axisymmetric current systems using the model of an axially magnetized cylinder
Andreev AK1
1Moscow Aviation Institute National Research University, Moscow, Russia
Email: alexande_andreev@yahoo.com

PDF
A method for calculating the inductive and power parameters of complex coaxial axisymmetric current systems based on a cylinder model is proposed. The method is based on the equivalence of the energies of coils and equal-sized cylinders with equal densities of their surface currents. The inductances, mutual inductances and ponderomotive forces in the coil system are calculated from the mutual energy and 3D fields of the cylinders. It is shown that the volume-average demagnetizing factor of a cylinder is equivalent to the Nagaoka coefficient for the inductance of coils of finite length. From the analysis of the correlation between the energy densities of the cylinder and the demagnetization energy, the criterion of a "short coil" is determined. The correspondence of the results obtained by the cylinder model to the calculations by current models is established. A method for calculating interlayer mechanical stresses, mutual radial and axial forces and stresses in a system of coaxial coils (cylinders) is presented. An example of using a cylinder model for calculating the inductance of a rectangular coil is given. Keywords: demagnetizing factor, Nagaoka coefficient, coil, inductance, energy, mechanical stresses.
  1. D.B. Montgomeri. Solenoid Magnet Design (Wiley-Interscience, NY., 1971)
  2. V.R. Karasik. Fizika i tekhnika sil'nykh magnitnykh poley (Nauka, M., 1964) (in Russian)
  3. H. Knoepfel. Pulsed High Magnetic Fields (North-Holland, Amsterdam 1970)
  4. D.H. Parkinson, B.E. Mulhall. The Generation of High Magnetic Fields (Plenum Press, NY., 1967)
  5. B.L. Alievsky, A.M. Oktyabrsky, V.L. Orlov, V.A. Postnikov. Modeling of magnetic fields of axisymmetric systems: textbook. manual, ed. B.L. Alievsky (MAI Publishing House, M., 2007) (in Russian)
  6. A.S. Lagutin, V.I. Ozhogin. Sil'nyye impul'snyye magnitnyye polya v fizicheskom eksperimente (Energoatomizdat, M., 1988) (in Russian)
  7. Electronic media. Available at: http://coil32.ru/, http://electronbunker.ca, http://g3ynh.info/zdocs/magnetics/
  8. J.C. Maxwell. A Treatise on Electricity and Magnetism (Dover Publ., NY., 1954), v. 2
  9. L. Lorenz. Uber die Fortpflanzung der Elektrizitat (Annalen der Physik, VII, 1879)
  10. H. Nagaoka. J. College Science, 27, 18 (1909)
  11. P.L. Kalantarov, L.A. Tseytlin. Raschet induktivnostey (Energoatomizdat, L., 1986) (in Russian) M.V. Nemtsov. Spravochnik po raschetu parametrov katushek induktivnosti (Energoatomizdat, M., 1989) (in Russian)
  12. G.A. Shtamberger. Ustroystva dlya sozdaniya slabykh postoyannykh magnitnykh poley, ed. K.B. Karandeyeva (Nauka, Novosibirsk, 1972) (in Russian)
  13. R.J. Joseph, J. Schlomann. Appl. Phys., 36 (5), 1579 (1964)
  14. A.K. Andreev. State Registration Certificate of Computer (Program N 2012614673, Byull. Izobret., No. 3, (2012), part 2, p. 378)
  15. T. Taniguchi. J. Magn. Magn. Mater., 452, 464 (2018). DOI: 10.1016/j.jmmm.2017.11.078
  16. A. Caciagli, R.J. Baars, A.P. Philipse, B.W.M. Kuipers. J. Magn. Magn. Mater., 456, 423 (2018). DOI: 10.1016/j.jmmm.2018.02.003
  17. R. Ravaud, G. Lemarquand, V. Lemarquand, S. Babic, C. Akyel. PIER, 102, 367 (2010). DOI: 10.2528/PIER07101504
  18. J. Conway. IEEE Trans. Magn., 43 (3), 1023 (2007). DOI: 10.1109/TMAG.2006.888565
  19. S. Babic, C. Akyel. Physics, 2 (3), 352 (2020). DOI: 10.3390/physics2030019
  20. L.B. Luganskiy. Elektrichestvo, 2, 55 (2017) (in Russian)
  21. A.K. Andreev. J. Mach. Manuf. Reliab, 48 (1), 26 (2019). DOI: 10.3103/S1052618819010035
  22. E. Pursell. Electricity and Magnetism (Cambridge Univ. Press, Cambridge, 2013)
  23. A.I. Akhiezer, V.G. Bar'yakhtar, S.V. Peletminskii. Spin Waves (John Wiley \& Sons, North-Holland, Amsterdam, 1968)
  24. M.A. Lavrent'yev, B.V. Shabat. Metody teorii funktsiy kompleksnogo peremennogo (Nauka, M., 1987) (in Russian)
  25. G.N. Watson. Theory of Bessel Functions (Cambridge University Press, 1922)
  26. A.K. Andreev. Tech. Phys. Lett., 47 (6), 547 (2021). DOI: 10.1134/1955S1063785021060031
  27. G. Eason, B. Noble, I.N. Sneddon. Phil. Trans. Roy. Soc., Lond. A, 247 (935), 529 (1955)
  28. Y.L. Luke. Mathematical Functions and Their Approximations (Academ. Press Inc. NY., San Francisco, London, 1975)
  29. A.K. Andreev. Tech. Phys. Lett., 46 (11), 1096 (2020). DOI: 10.1134/S1063785020110024
  30. A.K. Andreev. Tech. Phys. Lett., 47 (5), 464 (2021). DOI: 10.1134/S1063785021050023
  31. S.G. Kalashnikov. Elektrichestvo (Fizmatlit, M., pp 2003) (in Russian)
  32. A.H. Bobeck, E. Della Torre. Magnetic Bubbles (North-Holland Publishing Company-Amsterdam, Oxford, 1975)
  33. H. Callen, R.M. Josephs. J. Appl. Phys., 42 (5), (1977). DOI: 10.1063/1.1660475
  34. A.K. Andreev. J. Machinery Manufacture and Reliability, 51 (6), 511 (2022). DOI: 10.3103/S1052618822060036
  35. I.V. Savel'yev. Kurs obshchey fiziki, kn. 2. Elektrichestvo i magnetizm (Lan', SPb., 2006) (in Russian)
  36. M. Abramowitz, I. Stegun (ed.). Handbook of Mathematical Functions (Nation. Bureau of Standards, NY., 1964)

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru