Quantum-mechanical simultion of the Fe-Si(001) system at the growth stage of a solid wetting layer
Zavodinsky V.G. 1, Plusnin N.I. 2,3, Gorkusha O.A. 1
1Khabarovsk Branch of the Institute of Applied Mathematics, Far Eastern Branch of the Russian Academy of Sciences, Khabarovsk, Russia
2Budyonny Military Academy of the Signal Corps, St. Petersburg, Russia
3Institute of Automation and Control Processes, Far East Branch, Russian Academy of Sciences, Vladivostok, Russia
Email: vzavod@mail.com, plusnin@dvo.ru, o_garok@rambler.ru

PDF
Within the framework of density functional theory and the pseudo-potential method, the atomic and electronic structures of the film-substrate system at 0 K in the state of minimum free energy were studied during step-by-step (with a step size of one atomic diameter of Fe) deposition of a Solid Wetting Layer (SWL) Fe up to a thickness of 8 monolayers (ML) onto a normal Si(001) lattice compressed by 1.33 times in the <011> direction. It is shown that SWL grows in three stages: first, 2D, i.e. SWL with compositions Fe2Si and FeSi is formed on a normal and, accordingly, compressed substrate, and then 2D-SWL Fe and 3D-SWL Fe are sequentially formed. During the growth process of SWL, a three-dimensional environment of Fe atoms is built and the degree of coordination of Fe atoms, with a Fe thickness of 6.4 ML, reaches 10. As a result of this, an electronic structure specific of the bulk phase (BP) Fe is formed. After which, at a thickness of 8 ML Fe, a metastable and stable BP Fe is formed with an bc monoclinic lattice and, accordingly, bcc, i.e. lattice on a normal and compressed substrate. This process is accompanied by compaction of adjacent layers of the Si substrate and their transformation into high-pressure phases. Keywords: solid wetting layer, atomic coordination, electronic states, Fe-Si(001), simulating.
  1. J.H. Weaver. Studies of Silicon-Refractory Metal Interfaces: Photoemission Study of Interface Formation and Compound Nucleation. Final report No AD-A-150075/0/XAB (Minnesota Univ., Minneapolis, USA, 1984). https://doi.org/10.21236/ada135340
  2. J.H. Weaver. Phys. Today, 39 (1), 24 (1986). https://doi.org/10.1063/1.881062
  3. J.H. Weaver. http://jhweaver.matse.illinois.edu/JHW.pdf
  4. M.V. Gomoyunova, I.I. Pronin. Tech. Phys., 49 (10), 1249 (2004). https://doi.org/10.1134/1.1809696
  5. N.I. Plyusnin, A.V. Kostyuk (red.). Tverdyy smachivayushchiy sloy (Bol'shaya rossiyskaya entsiklopediya, M., 2023)(in print)
  6. N.I. Plyusnin. Physics Solid State, 61 (12), 2431 (2019). https://doi.org/10.1134/s1063783419120394
  7. J.A. Venables, G.D.T. Spiller, M. Hanbucken. Reports Progr. Phys., 47 (4), 399 (1984). https://doi.org/10.1088/0034-4885/47/4/002
  8. V.G. Lifshits, N.I. Plyusnin. Elektronnaya struktura i silitsidoobrazovaniye v tonkikh plenkakh perekhodnykh metallov na kremnii (Institute of Automation and Control Processes of Far East Scientific Center of the USSR Academy of Sciences, Vladivostok, 1984), preprint N 18, issue 127, 35 p
  9. V.G. Lifshits, N.I. Plusnin. Phys., Chem. Mechan. Surf., 3, 2669 (1985)
  10. K. Adamchuk, I.V. Lyubinetsky, A.M. Shikin. Pisma v ZhTF, 12 (17), 1056 (1986) (in Russian)
  11. P.W. Anderson. In: Elementary Excitations in Solids, Molecules, and Atoms. Part A (Springer US, Boston, MA, 1974). https://doi.org/10.1007/978-1-4684-2820-9_1
  12. F. Flores, J. Ortega, R. Perez. Surf. Rev. Lett., 6 (03-04), 411 (1999). https://doi.org/10.1142/s0218625x99000421
  13. J.C. Inkson. J. Phys. C: Solid State Phys., 6 (8), 1350 (1973). https://doi.org/10.1088/0022-3719/6/8/004
  14. N.I. Plyusnin, V.M. Il'yashchenko, S.A. Kitan', S.V. Krylov. J. Surf. Investigation. X-Ray, Synchrotron and Neutron Techniques, 3, 734 (2009). https://doi.org/10.1134/s1027451009050139
  15. N.I. Plyusnin. Kondensirovannye sredy i mezhfaznye granitsy, 25 (4), 2023 (2021) (in Russian)
  16. H. Brune, K. Kern. Chem. Phys. Solid Surf., 8, 149 (1997). https://doi.org/10.1016/s1571-0785(97)80008-9
  17. U.K. Kohler, J.E. Demuth, R.J. Hamers. Phys. Rev. Lett., 60 (24), 2499 (1988). https://doi.org/10.1103/physrevlett.60.2499
  18. St. Tosch, H. Neddermeyer. Phys. Rev. Lett., 61 (3), 349 (1988). https://doi.org/10.1103/physrevlett.61.349
  19. V.G. Lifshits, V.G. Zavodinskii, N.I. Plyusnin. Phys., Chem. Mechan. Surf., 2, 784 (1984)
  20. N.G. Galkin, V.G. Lifshits, N.I. Plyusnin. Poverkhnost. Fizika, khimiya, mekhanika 12, 50 (1987) (in Russian)
  21. P. Wetzel, C. Pirri, J.C. Peruchetti, D. Bolmont, G. Gewinner. Solid State Commun., 65 (10), 1217 (1988). https://doi.org/10.1016/0038-1098(88)90926-x
  22. O.A. Utas, T.V. Utas, V.G. Kotlyar, A.V. Zotov, A.A. Saranin, V.G. Lifshits. Surf. Sci., 596 (1-3), 53 (2005). https://doi.org/10.1016/j.susc.2005.09.004
  23. H. Von Kanel, K.A. Mader, E. Muller, N. Onda, H. Sirringhaus. Phys. Rev. B, 45 (23), 13807 (1992)
  24. N.I. Plusnin. Tech. Phys., 68 (1), 146 (2023). https://doi.org/10.21883/tp.2023.01.55449.191-22
  25. M. Bockstedte, A. Kley, J. Neugebauer, M. Scheffler. Comp. Phys. Commun., 107 (1-3), 187 (1997). https://doi.org/10.1016/s0010-4655(97)00117-3
  26. P. Hohenberg, W. Kohn. Phys. Rev., 136 (3B), B864 (1964). https://doi.org/10.1103/physrev.136.b864
  27. W. Kohn, L.J. Sham. Phys. Rev., 140 (4A), A1133 (1965). https://doi.org/10.1103/physrev.140.a1133
  28. M.L. Cohen, V. Heine. In: Solid State Physics, 24. Ed. H. Ehrenreich, F. Seitz, D. Turnbull. (Academic Press, NY., 1970), 37. https://doi.org/10.1016/s0081-1947(08)60070-3
  29. M. Fuchs, M. Scheffler. Comp. Phys. Commun., 119 (1), 67 (1999). https://doi.org/10.1016/s0010-4655(98)00201-x
  30. M. Hasegawa, N. Kobayashi, N. Hayashi. Surf. Sci., 357, 931 (1996). https://doi.org/10.1016/0039-6028(96)00294-4
  31. K. Konuma, J. Vrijmoeth, P.M. Zagwijn, J.W.M. Frenken, E. Vlieg, J.F. van der Veen. J. Appl. Phys., 73 (3), 1104 (1993). https://doi.org/10.1063/1.353273
  32. N.I. Plyusnin, V.M. Il'yashchenko, S.V. Krylov, S.A. Kitan'. Tech. Phys. Lett., 33 (6), 486 (2007). https://doi.org/10.1134/s1063785007060132
  33. L. Fan, D. Yang, D. Li. Materials, 14 (14), 3964 (2021). https://doi.org/10.3390/ma14143964
  34. J. Chrost, J.J. Hinarejos, P. Segovia, E.G. Michel, R. Miranda. Surf. Sci., 371 (2-3), 297 (1997). https://doi.org/10.1016/s0039-6028(96)01013-8
  35. R. Moons, S. Degroote, J. Dekoster, A. Vantomme, G. Langouche. Nucl. Instrum. Methods Phys. Research Section B: Beam Interactions with Materials and Atoms, 136, 268 (1998). https://doi.org/10.1016/s0168-583x(97)00695-2
  36. Y.F. Zhang, J.F. Jia, Z. Tang, T.Z. Han, X.C. Ma, Q.K. Xue. Surf. Sci., 596 (1-3), L331 (2005). https://doi.org/10.1016/j.susc.2005.09.006
  37. P. Bertoncini, P. Wetzel, D. Berling, G. Gewinner, C. Ulhaq-Bouillet, V. Pierron Bohnes. Phys. Rev. B, 60 (15), 11123 (1999). https://doi.org/10.1016/s0039-6028(00)00180-1
  38. A. Franciosi, J.H. Weaver. Surf. Sci., 132 (1-3), 324 (1983). https://doi.org/10.1016/0039-6028(83)90545-9
  39. H. Wu, P. Kratzer, M. Scheffler. Phys. Rev. B, 72 (14), 144425 (2005). https://doi.org/10.1103/physrevb.72.144425

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru