Determination of the refractive indices of photonic crystal layers from anodic alumina
Pyatnov M. V.
1,2, Sokolov M. M.
2, Kiselev I. A.
2, Bikbaev R. G.
1,2, Pankin P. S.
1,2, Volkova I. R.
1,3, Gunyakov V. A.
1, Volochaev M. N.
1, Ryzhkov I. I.
2,4, Vetrov S. Ya.
1,2, Timofeev I. V.
1,2, Shabanov V. F.
1,31Kirensky Institute of Physics, Krasnoyarsk Scientific Center, Siberian Branch, Russian Academy of Sciences, Krasnoyarsk, Russia
2Siberian Federal University, Krasnoyarsk, Russia
3Krasnoyarsk Scientific Center of the Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk, Russia
4Institute of Computational Modeling, Siberian Branch, Russian Academy of Sciences, Krasnoyarsk, Russia
Email: MaksPyatnov@yandex.ru, tiv@iph.krasn.ru
Samples of photonic crystals with a different number of structure periods were fabricated by the method of anodizing aluminum foil. Using the angular dependence of transmission spectra, transmission electron microscopy data and numerical simulation, the refractive indices of photonic crystal layers are determined. The structure of the samples, the thickness of the layers and their porosity were determined. The theory of the effective medium in the approximations of Bruggemann, Maxwell Garnett, Monecke, Landau-Lifshitz/Looyenga, Lorentz-Lorentz, del Rio-Zimmerman-Dawe, as well as the complex refractive index is applied to determine the refractive indices of the layers. All approximations showed similar values, which indicates the possibility of using them to describe heterogeneous dielectric media. Keywords: photonic crystal, aluminum oxide, porous material, photonic band gap, anodizing, effective refractive index.
- J.D. Joannopoulos, P.R. Villeneuve, Sh. Fan. Solid State Commun., 102 (2-3), 165 (1997). DOI: 10.1016/S0038-1098(96)00716-8
- X. Lv, B. Zhong, Y. Huang, Z. Xing, H. Wang, W. Guo, X. Chang, Z. Zhang. Chin. J. Mech. Eng., 36, 39 (2023). DOI: 10.1186/s10033-023-00836-2
- A.A. Yeliseyev, A.V. Lukashin. Funktsional'nyye nanomaterialy (Fizmatlit, M., 2010) (in Russian)
- C.S. Law, S.Y. Lim, A.D. Abell, N.H. Voelcker, A. Santos. Nanomaterials, 8 (10), 788 (2018). DOI: 10.3390/nano8100788
- G. Shang, D. Bi, V.S. Gorelik, G. Fei, L. Zhang. Mat. Tod. Comm., 34, 105052 (2023). DOI: 10.1016/j.mtcomm.2022.105052
- G.D. Sulka, K. Hnida. Nanotechnology, 23, 075303 (2012)
- S.E. Kushnir, T.Y. Pchelyakova, K.S. Napolskii. J. Mater. Chem. C, 6, 12192 (2018). DOI: 10.1039/C8TC04246B
- P. Roy, S. Berger, P. Schmuki. Angewandte Chemie International Edition, 50 (13), 2904 (2011). DOI: 10.1002/anie.201001374
- A. Mozalev, R.M. Vazquez, C. Bittencourt, D. Cossement, F. Gispert-Guirado, E. Llobet, H. Habazaki. J. Mater. Chem. C, 2, 4847 (2014). DOI: 10.1039/C4TC00349G
- I. Sieber, H. Hildebrand, A. Friedrich, P. Schmuki. J. Electroceram., 16 (1), 35 (2006). DOI: 10.1007/s10832-006-4351-7
- K.V. Chernyakova, E.N. Muratova, I.A. Vrublevsky, N.V. Lushpa. J. Phys.: Conf. Ser., 2086, 012025 (2021). DOI: 10.1088/1742-6596/2086/1/012025
- Y. Suzuki, K. Kawahara, T. Kikuchi, R.O. Suzuki, S. Natsui. J. Electrochem. Soc., 166, C261 (2019). DOI: 10.1149/2.0221912jes
- T. Shimizu, K. Matsuura, H. Furue, K. Matsuzak. J. Eur. Ceram. Soc., 33 (15-16), 3429 (2013). DOI: 10.1016/j.jeurceramsoc.2013.07.001
- M. Sarraf, B. Nasiri-Tabrizi, A. Dabbagh, W.J. Basirun, N.L. Sukiman. Ceram. Int., 46 (6), 7306 (2020). DOI: 10.1016/j.ceramint.2019.11.227
- G.L. Shang, G.T. Fei, Y. Zhang, P. Yan, S.H. Xu, H.M. Ouyang, L. De Zhang. Sci. Rep., 4 (1), 3601 (2014). DOI: 10.1038/srep03601
- A. Santos, C.S. Law, D.W.C. Lei, T. Pereira, D. Losic. Nanoscale, 8 (43), 18360 (2016)
- C.S. Law, Sukarno, A. Santos. Nanoscale, 9 (22), 7541 (2017). DOI: 10.1039/C7NR02115A
- G. Macias, J. Ferre-Borrull, J. Pallares, L.F. Marsal. Nanoscale Res. Lett., 9 (1), 315 (2014). DOI: 10.1186/1556-276X-9-315
- A.R. Gomez, L.K. Acosta, J. Ferre-Borrull, A. Santos, L.F. Marsal. ACS Appl. Nano Mat., 6 (7), 5274 (2023). DOI: 10.1021/acsanm.2c05356
- Y. Li, C. Yan, X. Chen, Y. Lei, B.-C. Ye. Sensor, Actuat. B-Chem., 350, 130835 (2022). DOI: 10.1016/j.snb.2021.130835
- I. Garrido-Cano, L. Pla, S. Santiago-Felipe, S. Simon, B. Ortega, B. Bermejo, A. Lluch, J.M. Cejalvo, P. Eroles, R. Martinez-Manez. ACS Sens., 6 (3), 1022 (2021). DOI: 10.1021/acssensors.0c02222
- U. Malinovskis, A. Dutovs, R. Poplausks, D. Jevdokimovs, O. Graniel, M. Bechelany, I. Muiznieks, D. Erts, J. Prikulis. Coatings, 11 (7), 756 (2021). DOI: 10.3390/coatings11070756
- M. Ashurov, V. Gorelik, K. Napolskii, S. Klimonsky. Phot. Sens., 10, 147 (2020). https://doi.org/10.1007/s13320-019-0569-2
- H. Masuda, M. Yamada, F. Matsumoto, S. Yokoyama, S. Mashiko, M. Nakao, K. Nishio. Adv. Mater., 18 (2), 213 (2006). DOI: 10.1002/adma.200401940
- W. Yang, B. Wang, A. Sun, J. Liu, G. Xu. Mater. Lett., 178, 197 (2016). DOI: 10.1016/j.matlet.2016.05.001
- L. Yisen, C. Yi, L. Zhiyuan, H. Xing, L. Yi. Electr. Comm., 13, 1336 (2011). DOI: 10.1016/j.elecom.2011.08.008
- S.E. Kushnir, K.S. Napolskii. Mat. Des., 144, 140--150 (2018). DOI: 10.1016/j.matdes.2018.02.012
- T.C. Choy. Effective Medium Theory: Principles and Applications (Clarendon Press, Oxford, 1999)
- A. Santos, V.S. Balderrama, M. Alba, P. Formenti n, J. Ferre-Borrull, J. Pallarrs, L.F. Marsal. Adv. Mater., 24 (8), 1050 (2012). DOI: 10.1002/adma.201104490
- V.S. Gorelik, M.M. Yashin, D. Bi, G. Tao Fei. Opt. Spectrosc., 124, 171 (2018) (in Russian). DOI: 10.21883/OS.2018.02.45519.177-17
- A. Yariv, P. Yukh. Opticheskiye volny v kristallakh, trans. from English Mir, M., (1987),
- A. Hierro-Rodriguez, P. Rocha-Rodrigues, F. Valdes-Bango, J.M. Alameda, P.A.S. Jorge, J.L. Santos, J.P. Araujo, J.M. Teixeira, A. Guerreiro. J. Phys. D: Appl. Phys., 48, 455105 (2015). DOI: 10.1088/0022-3727/48/45/455105
- Electronic source. Available at: https://imagej.nih.gov/ij/index.html
- L.A. Apresyan, D.V. Vlasov, D.A. Zadorin, V.I. Krasovsky. ZhTF 87, 10 (2017) (in Russian). DOI: 10.21883/JTF.2017.01.44011.1841
- D.A. Bruggeman. Ann. Phys., 24, 636 (1935)
- J.C. Maxwell-Garnett. Phil. Trans. R Soc. Lond., 203, 385 (1904)
- S.Ya. Vetrov, A.Yu. Avdeeva, M.V. Pyatnov, I.V. Timofeev. Komp. Opt., 44 (3), 319 (2020). DOI: 10.18287/2412-6179-CO-637
- J. Monecke. J. Phys: Condens. Matter., 6, 907 (1994). DOI: 10.1088/0953-8984/6/4/010
- L.D. Landau, E.M. Lifshits. Elektrodinamika sploshnykh sred (Nauka, M., 2005) (in Russian)
- H. Looyenga. Physica, 31 (3), 401 (1965). DOI: 10.1016/0031-8914(65)90045-5
- B. Ersfeld, B. Felderhof. Phys. Rev. E, 57, 1118 (1998). DOI: 10.1103/PhysRevE.57.1118
- D. Estrada-Wiese, J.A. del Rio. Rev. Mex. Fi s., 64, 72 (2018). DOI: 10.31349/RevMexFis.64.72
- J.A. del Rio, R.W. Zimmerman, R.A. Dawe. Sol. St. Comm., 106, 183 (1998). DOI: 10.1016/S0038-1098(98)00051-9
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.