Electron transport control in quasi-2D-layered ZnO nanoflakes from the standpoint of their effective application in solid-state sensors
Glukhova O. E.
1, Kolesnichenko P. A.
11Saratov State University, Saratov, Russia
Email: glukhovaoe@info.sgu.ru
The report discusses the electronic characteristics of quasi-2D-layered ZnO nanoflakes, as well as the role of controlling their thickness from the standpoint of increasing the sensitivity of their surface to analytes (acetone, butanol, etc.), which is necessary from the point of view of using these structures as materials for solid gas sensors. The study was conducted using the SCC DFTB method in the DFTB+ software package. ZnO nanoflakes with a hexagonal structure (symmetry group P63mc) with a phase surface (1120) were chosen as the object of study. For this object, the optimal width of the 2D-layer was found, after which various analytes were placed on its surface and the resistance was calculated. The result of the study was a diagram of the change in the resistance (conductivity) of zinc oxide when various analytes are on the surface. Keywords: zinc oxide, analytes, conductivity, quantum transport, SCC DFTB.
- M. Hellstrom, K. Jorner, M. Bryngelsson, S.E. Huber, J. Kullgren, T. Frauenheim, P. Broqvist. J. Phys. Chem. C, 117, 17004 (2013). DOI: 10.1021/jp404095x
- H. Morko, U. Ozgur. Zinc Oxide: Fundamentals, Materials, and Device Technology (Wiley-VCH Verlag GmbH \& Co. KGaA, Weinheim, 2009), DOI: 10.1002/9783527623945
- C. Ratnasamy, J. Wagner. Catalys. Rev., 51, 325 (2009). DOI: 10.1080/01614940903048661
- Z.L. Wang. J. Phys. Condensed Matter, 16, 829 (2004). DOI: 10.1088/0953-8984/16/25/R01
- K. Schilling, B. Bradford, D. Castelli, E. Dufour, J.F. Nash, W. Pape, S. Schulte, I. Tooley, J. Van den Bosch, F. Schellauf. Photochem. Photobiolog. Sci., 9, 495 (2010). DOI: 10.1039/b9pp00180h
- T. Xia, M. Kovochich, M. Liong, L. Madler, B. Gilbert, H. Shi, J.I. Yeh, J.I. Zink, A.E. Nel. ACS Nano, 2, 2121 (2008). DOI: 10.1021/nn800511k
- K. Nomura, H. Ohta, K. Ueda, T. Kamiya, M. Hirano, H. Hosono. Science, 300 (5623), 1269 (2003). DOI: 10.1126/science.1083212
- T. Nakada, Y. Hirabayashi, T. Tokado, D. Ohmori, T. Mise. Solar Energy, 77 (6), 739 (2004). DOI: 10.1016/j.solener.2004.08.010
- C. Zhou, J. Kang. J. Mater. Sci.: Mater. Electron., 19, 229 (2008). DOI: 10.1007/s10854-007-9561-5
- S.H. Overbury, P.V. Radulovic, S. Thevuthasan, G.S. Herman, M.A. Henderson, C.H.F. Peden. Surf. Sci., 410, 106 (1998). DOI: 10.1016/S0039-6028(98)00307-0
- C.B. Duke, A.R. Lubinsky. Surf. Sci., 50, 605 (1975). DOI: 10.1016/0039-6028(75)90049-7
- M. Sambi, G. Granozzi, G.A. Rizzi, M. Casarin, E. Tondello. Surf. Sci., 319, 149 (1994). DOI: 10.1016/0039-6028(94)90577-0
- M. Galeotti, A. Atrei, U. Bardi, G. Rovida, M. Torrini, E. Zanazzi, A. Santucci, A. Klimov. Chem. Phys. Lett., 222, 349 (1994). DOI: 10.1016/0009-2614(94)87073-X
- N.K. Plugotarenko, T.N. Myasoedova, S.P. Novikov, T.S. Mikhailova. Chemosensors, 10 (4), 126 (2022). DOI: 10.3390/chemosensors10040126
- S. Datta. Electronic Transport in Mesoscopic Systems (Cambridge University Press, Cambridge, 1995). DOI: 10.1017/CBO9780511805776
- O.E. Glukhova, D.S. Shmygin. Beilstein J. Nanotechnol., 9, 1254 (2018). DOI: 10.3762/bjnano.9.117
- O.E. Glukhova, G.V. Savostyanov, M.M. Slepchenkov. Proced. Mater. Sci., 6, 256 (2014). DOI: 10.1016/j.mspro.2014.07.032
- M. Elstner, D. Porezag, G. Jungnickel, J. Elsner, M. Haugk, Th. Frauenheim, S. Suhai, G. Seifert. Phys. Rev. B, 58, 7260 (1998). DOI: 10.1103/PhysRevB.58.7260
- O.E. Glukhova, M.M. Slepchenkov. J. Phys. Chem. C, 120, 17753 (2016). DOI: 10.1021/acs.jpcc.6b05058
- M.M. Slepchenkov, D.S. Shmygin, G. Zhang, O.E. Glukhova. Nanoscale, 11, 16414 (2019). DOI: 10.1039/C9NR05185F
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.