Dynamics of thermal pairwise entanglement of qubits in the three-qubit Tavis-Cummings model
Bagrov A.R.1, Bashkirov E. K. 1
1Samara National Research University, Samara, Russia
Email: alexander.bagrov00@mail.ru, bashkirov.ek@ssau.ru

PDF
An exact solution has been found for a model consisting of three identical qubits, one of which is in a free state, and the other two are trapped in an ideal cavity and resonantly interact with the selected mode of this cavity. Based on the exact solution, the pairwise negativities of qubits was calculated for two initial W-type qubits states and the thermal state of the cavity field. The influence of the intensity of the thermal noise of the cavity and the parameters that specify the initial state of the qubits on the amount of their entanglement in the process of further evolution has been studied. It is shown that in the case of low intensities of the thermal field of the cavity, for one of the initial states of the qubits under consideration, the phenomenon of sudden death of entanglement is observed, while for the other initial state of the qubits such an phenomenon is absent. It has also been established that with an increase in the intensity of the thermal field, the sudden death of entanglement occurs for both states. Keywords: qubits, genuine entangled W-type states, thermal field, one-photon transitions, entanglement, negativity, sudden death of entanglement.
  1. Z.-L. Xiang, S. Ashhab, J.Y. You, F. Nori. Rev. Mod. Phys., 85 (2), 623 (2013). DOI: 10.1103/RevModPhys.85.623
  2. L.M. Georgescu, S. Ashhab, F. Nori. Rev. Mod. Phys., 88 (1), 153 (2014). DOI: 10.1103/RevModPhys.86.153
  3. X. Gu, A.F. Kockum, A. Miranowicz, Y.X. Liu, F. Nori. Phys. Reports, 718--719, 1 (2017). http://doi.org/10.1016/j.physrep.2017.10.002
  4. G. Wendin. Reports Progress Phys., 80, 106001 (2017). http://doi.org/10.1088/1361-6633/aa7e1a
  5. H.-L. Huang, D. Wu, D. Fan, X. Zhu. Science China Information Sci., 63, 180501 (2020). http://doi.org/10.1007/S11432-020-2881-9
  6. L. Pezze, A. Smerzi, M.K. Oberthaler, R. Schmied, P. Treutlei. Rev. Modern Phys., 90, 035005 (2018). https://doi.org/10.1103/RevModPhys.90.035005
  7. A.R. Bagrov, E.K. Bashkirov. IX Intern. Conf. Inform. Technol. Nanotechnol. (ITNT), 23240901 (2023). 10.1109/ITNT57377.2023.10139206
  8. W. Dur, J.I. Cirac. Phys. Rev. A, 61, 042314 (2000). https://doi.org/10.1103/PhysRevA.61.042314
  9. W. Dur, J.I. Cirac, G. Vidal. Phys. Rev. A, 62, 062314 (2000). https://doi.org/10.1103/PhysRevA.62.062314
  10. A. Acin, D. Brub, M. Lewenstein, A. Sanpera. Phys. Rev. Lett., 87, 040401 (2000). https://doi.org/10.1103/PhysRevLett.87.040401
  11. C. Sabin, G. Garcia-Alcaine. Europ. Phys. J. D, 48, 435 (2008). https://doi.org/10.1140/epjd/e2008-00112-5
  12. S.M. Siti, Munirah Mohd, B. Idrus, H. Zainuddin, M. Mukhta. Intern. J. Adv. Comp. Sci. Appl., 10 (7), 374 (2019). https://doi.org/10.14569/IJACSA.2019.0100751
  13. Y. Akbari-Kourbolagh. Intern. J. Quan. Inform., 15, 1750049 (2017). https://doi.org/10.1142/S0219749917500496
  14. M. Neeley et al., Nature, 467, 570 (2010). https://doi.org/10.1038/nature09418
  15. L. DiCarlo et al., Nature, 467, 574 (2010). https://doi.org/10.1038/nature09416
  16. D.C. Cole, S.D. Erickson, P.-Y. Hou, A.C. Wilson, D. Leibfried, F. Reiter. New J. Phys., 23, 073001 (2021). DOI: 10.1088/1367-2630/ac09c8
  17. K.Takeda, A. Noiri, T.I. Nakajima, J. Yoneda, T. Kobayashi, S. Tarucha. Nat. Nanotech., 16, 965 (2021). https://doi.org/10.1038/s41565-021-00925-0
  18. Z. Dong, G. Zhang, A.-G. Wu, R.-B. Wu. IEEE Trans. Autom. Contr., 68, 2028 (2023). DOI: 10.1109/ITNT57377.2023.10139206
  19. E.K Bashkirov. ZhTF, 93(4), 431 (2023). (in Russian). DOI: 10.21883/JTF.2023.04.55028.280-22
  20. T. Yu, J.H. Eberly. Phys. Rev. Lett., 93, 140104 (2004). DOI: 10.1103/PhysRevLett.93.140404
  21. M.P. Almeida, F. de Melo, M. Hor-Meyll, A. Salles, S.P. Walborn, P.H. Souto Ribeiro, L. Davidovich. Science, 316, 579 (2007). DOI: 10.1126/science.1139892
  22. M. Ge, L.-F. Zhu, L. Qui. Commun. Theor. Phys., 49, 1443 (2008). DOI: 10.1088/0253-6102/49/6/20
  23. F. Han, Y.-J. Xia. Int. J. Quant. Inform., 7 (7), 1337 (2009). https://doi.org/10.1142/S0219749909005821
  24. L.-N. Jiang, J.-L. Zhang, J. Ma, S.-Y. Yu, Q. Han, B. Li. Int. J. Theor. Phys., 53, 942 (2014). DOI: 10.1007/s10773-013-1885-8
  25. W.K. Wootters. Phys. Rev. Lett., 80, 22458 (1998). http://doi.org/10.1103/PhysRevLett.80.2245
  26. A. Peres. Phys. Rev. Lett., 77, 1413 (1996). http://doi.or/10.1103/PhysRevLett.77.1413
  27. R. Horodecki, M. Horodecki, P. Horodecki. Phys. Lett. A, 223 333. http://doi.org/10.1016/S0375-9601(96)00706-2
  28. E.K. Bashkirov. Int. J. Theor. Phys., 57, 3761 (2018). https://doi.org/10.1007/s10773-018-3888-y

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru