Pulsed tunable quantum cascade laser in the spectral range of 9.6-12.5 μm
Anfimov D. R.1, Golyak Ig. S.1, Demkin P. P.1, Zadorozhny E. N.1, Vintaykin I. B.1, Morozov A. N.1, Fufurin I. L.1
1Bauman Moscow State Technical University, Moscow, Russia
Email: dimananfimov97@gmail.com

PDF
A pulsed quantum cascade laser tunable in the spectral range of 9.6-12.5 μm is presented. The maximum pulse power is 199.8 mW, the maximum average power is 7.57 mW, the tuning step is 2 cm-1 and the spectral line width is 2 cm-1. The schematic diagram of the quantum cascade laser, the main components and their technical characteristics are described. The quantum cascade laser, a multi-pass Herriott gas cell with an optical path length of 76 m, and two mercury-cadmium-telluride thermoelectrically cooled photodetectors comprise an experimental setup intended for gas absorption infrared spectroscopy. The transmission spectra measurements of an acetone mixture at 100 ppm concentration in nitrogen are reported. Keywords: quantum cascade laser, Herriott gas cell, Littrow configuration, gas absorption spectroscopy, superlattice, quantum well.
  1. R.F. Kazarinov, R.A. Suris. Sov. Phys. Semicond., 5, 707 (1971).]
  2. C. Gmachl, F. Capasso, D.L Sivco, A.Y. Cho. Rep. Prog. Phys., 64, 1533 (2001). DOI: 10.1088/0034-4885/64/11/204
  3. J. Faist, F. Capasso, D.L. Sivco, C. Sirtori, A.L. Hutchinson, A.Y. Cho. Science, 264, 553 (1994). DOI: 10.1126/science.264.5158.553
  4. F. Capasso. Science, 235, 172 (1987). DOI: 10.1126/science.235.4785.172
  5. L.A. Skvortsov. Primenenie kvantovo-kaskadnykh lazerov: sostoyanie i perspektivy (Technosphere, M., 2020) (in Russian)
  6. S. Slivken, A. Evans, J. David, M. Razeghi. Appl. Phys. Lett., 81, 4321 (2002). DOI: 10.1063/1.1526462
  7. J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D.L. Sivco, J.N. Baillargeon, A.Y. Cho. Appl. Phys. Lett., 70, 2670 (1997). DOI: 10.1063/1.119208
  8. R. Maulini, M. Beck, J. Faist, E. Gini. Appl. Phys. Lett., 84, 1659 (2004). DOI: 10.1063/1.1667609
  9. A. Mendizabal, P.G. Loges. Proc. SPIE, Optical Fibers and Sensors for Medical Diagnostics, Treatment and Environmental Applications XXIII (San Francisco, California, United States, 2023), v. 12372, p. 123720H. DOI: 10.1117/12.2655234
  10. P. Kotidis, E.R. Deutsch, A. Goyal. Proc. SPIE, Micro- and Nanotechnology Sensors, Systems, and Applications VII (Baltimore, United States, 2015), v. 9467, p. 94672S-1. DOI: 10.1117/12.2178169
  11. I.L. Fufurin, A.S. Tabalina, A.N. Morozov, I.S. Golyak, S.I. Svetlichnyi, D.R. Anfimov, I.V. Kochikov. Opt. Eng., 59 (6), 061621 (2020). DOI: 10.1117/1.OE.59.6.061621
  12. I.S. Golyak, A.N. Morozov, S.I. Svetlichnyi, A.S. Tabalina, I.L. Fufurin. Russ. J. Phys. Chem. B, 13, 557 (2019). DOI: 0.1134/S1990793119040055
  13. J.R. Castro-Suarez, M. Hidalgo-Santiago, S.P. Hernandez-Rivera. Appl. Spectr., 69 (9), 1023 (2015). DOI: 10.1366/14-07626
  14. D.R. Anfimov, I.S. Golyak, O.A. Nebritova, I.L. Fufurin. Russ. J. Phys. Chem. B, 16 (5), 834 (2022). DOI: 10.1134/S1990793122050165
  15. D.A. Samsonov, A.S. Tabalina, I.L. Fufurin. Vestnik of MGTU named after N.E. Bauman. Ser. Estestvennye nauki, 4, 103 (2018) (in Russian). DOI: 10.18698/1812-3368-2018-4-103-114
  16. D.B. Kelley, D. Wood, A.K. Goyal, P. Kotidis. Proc. SPIE, Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing XIX (Orlando, United States, 2018), v. 10629, p. 1062909. DOI: 10.1117/12.2304387
  17. D. Wood, D.B. Kelley, A.K. Goyal, P. Kotidis. Proc. SPIE, Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing XIX (Orlando, United States, 2018), v. 10629, p. 1062915. DOI: 10.1117/12.2304453
  18. T. Myers, D. Wood, A.K. Goyal, D. Kelley, P. Kotidis, G. Raz, C. Murphy, C. Georgan. Proc. SPIE, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XXIII (Anaheim, United States, 2017), v. 10198, p. 101980C. DOI: 10.1117/12.2262548
  19. A.K. Goyal, D. Wood, V. Lee, J. Rollag, P. Schwarz, L. Zhu, G. Santora. Opt. Eng., 59 (9), 092003 (2020). DOI: 10.1117/1.OE.59.9.092003
  20. A.C. Padilla-Jimenez, W. Ortiz-Rivera, C. Rios-Velazquez, I. Vazquez-Ayala, S.P. Hernandez-Rivera. Opt. Eng., 53 (6), 061611 (2014). DOI: 10.1117/1.OE.53.6.061611
  21. K. Yeh, R. Bhargava. Proc. SPIE, Biomedical Vibrational Spectroscopy (San Francisco, United States, 2016), v. 9704, p. 970406. DOI: 10.1117/12.2230003
  22. L.L. de Boer, T.M. Bydlon, F. van Duijnhoven, M.T.F.D. Vranken Peeters, C.E. Loo, G.A.O. Winter-Warnars, J. Sanders, H.J.C.M. Sterenborg, B.H.W. Hendriks, T.J.M. Ruers. J. Transl. Med., 16, 367 (2018). DOI: 10.1186/s12967-018-1747-5
  23. R. Marbach, H.M. Heise. Appl. Opt., 34 (4), 610 (1995). DOI: 10.1364/AO.34.000610
  24. S. Rassel, C. Xu, S. Zhang, D. Ban. Analyst, 145 (7), 2441 (2020). DOI: 10.1039/C9AN02354B
  25. C. Vranciv c, N. Kroger, N. Gretz, S. Neudecker, A. Pucci, W. Petrich. Anal. Chem., 86, 10511 (2014). DOI: 10.1021/ac5028808
  26. J. Haas, E. Vargas Catalan, P. Piron, M. Karlsson, B. Mizaikoff. Analyst, 143, 5112 (2018). DOI: 10.1039/C8AN00919H
  27. M.J. Norahan, R. Horvath, N. Woitzik, P. Jouy, F. Eigenmann, K. Gerwert, C. Kotting. Anal. Chem., 93, 6779 (2021). DOI: 10.1021/acs.analchem.1c00666
  28. A. Schwaighofer, B. Lendl. Vibrational Spectroscopy in Protein Research. Chapter 3. (Academic Press, Toronto-London-NY., 2020), DOI: 10.1016/B978-0-12-818610-7.00003-7
  29. V.V. Dudelev, D.A. Mikhailov, A.V. Babichev, A.D. Andreev, S.N. Losev, E.A. Kognovitskaya, Yu.K. Bobretsova, S.O. Slipchenko, N.A. Pikhtin, A.G. Gladyshev, D.V. Denisov, I.I. Novikov, L.Ya. Karachinsky, V.I. Kuchinskii, A.Yu. Egorov, G.S. Sokolovskii. Quant. Electron., 50 (2), 141 (2020). DOI: 10.1070/QEL17168
  30. A.V. Babichev, V.V. Dudelev, A.G. Gladyshev, D.A. Mikhailov, A.S. Kurochkin, E.S. Kolodeznyi, V.E. Bougrov, V.N. Nevedomskiy, L.Ya. Karachinsky, I.I. Novikov, D.V. Denisov, A.S. Ionov, S.O. Slipchenko, A.V. Lutetskiy, N.A. Pikhtin, G.S. Sokolovskii, A.Yu. Egorov. Tech. Phys. Lett., 45, 735 (2019). DOI: 10.1134/S1063785019070174
  31. T. Fei, S. Zhai, J. Zhang, N. Zhuo, J. Liu, L. Wang, S. Liu, Z. Jia, K. Li, Y. Sun, K. Guo, F. Liu, Z. Wang. J. Semicond., 42 (11), 112301 (2021). DOI: 10.1088/1674-4926/42/11/112301
  32. E.R. Deutsch, P. Kotidis, N. Zhu, A.K. Goyal. Proc. SPIE, Advanced Environmental, Chemical, and Biological Sensing Technologies XI (Baltimore, United States, 2014), v. 9106, p. 91060A. DOI: 10.1117/12.2058544
  33. I.V. Kochikov, A.N. Morozov, I.L. Fufurin, S.I. Svetlichnyi. Opt. Spectr., 106 (5), 666 (2009). DOI: 10.1134/S0030400X09050075
  34. A.K. Goyal, P. Kotidis, E.R. Deutsch, N. Zhu, M. Norman, J. Ye, K. Zafiriou, A. Mazurenko. Proc. SPIE, Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing XVI (Baltimore, United States, 2015), v. 9455, p. 94550L. DOI: 10.1117/12.2177527
  35. A. Reyes-Reyes, Z. Hou, E. van Mastrigt, R.C. Horsten, J.C. de Jongste, M.W. Pijnenburg, H.P. Urbach, N. Bhattacharya. Opt. Express, 22 (15), 18299 (2014). DOI: 10.1364/OE.22.018299
  36. I.S. Golyak, E.R. Kareva, I.L. Fufurin, D.R. Fufurin, A.V. Shcherbakova, O.A. Nebritova, P.P. Demkin, A.N. Morozov. Komp'yuternaya optika, 46 (4), 650 (2022) (in Russian). DOI: 10.18287/2412-6179-CO-1058
  37. A. Genner, P. Marti n-Mateos, H. Moser, B. Lendl. Sensors, 20, 1850 (2020). DOI: 10.3390/s20071850
  38. F. Zheng, X. Qiu, L. Shao, S. Feng, T. Cheng, X. He, Q. He, C. Li, R. Kan, C. Fittschen. Opt. Laser Technol., 124, 105963 (2020). DOI: 10.1016/j.optlastec.2019.105963
  39. N. Liu, L. Xu, S. Zhou, L. Zhang, J. Li. Analyst, 146, 3841 (2021). DOI: 10.1039/C9AN02354B
  40. X. Tian, F. Been, P.S. Bauerlein. Environmental Research, 212 (D), 113569 (2022). DOI: 10.1016/j.envres.2022.113569
  41. A. Reyes-Reyes, R.C. Horsten, H.P. Urbach, N. Bhattacharya. Analyt. Chem., 87 (1), 507 (2015). DOI: 10.1021/ac504235e
  42. A.V. Shcherbakova, D.R. Anfimov, I.L. Fufurin, I.S. Golyak, I.A. Trapeznikova, E.R. Kareva, A.N. Morozov. Opt. Spectr., 129 (6), 830 (2021). DOI: 10.1134/S0030400X21060151
  43. O.A. Nebritova, P.P. Demkin, A.N. Morozov, P.V. Berezhansky, D.R. Anfimov, I.L. Fufurin. Vestnik of MGTU named after N.E. Bauman. Ser. Yestestvennyye nauki, 6, 39 (2023) (in Russian). DOI: 10.18698/1812-3368-2023-6-39-54
  44. I. Fufurin, P. Berezhanskiy, I. Golyak, D. Anfimov, E. Kareva, A. Scherbakova, P. Demkin, O. Nebritova, A. Morozov. Materials, 15, 2984 (2022). DOI: 10.3390/ma15092984
  45. I.S. Golyak, P.V. Berezhansky, A.Yu. Sedova, T.A. Gutyrchik, O.A. Nebritova, A.N. Morozov, D.R. Anfimov, I.B. Vintaikin, A.A. Konopleva, P.P. Demkin, I.L. Fufurin. Opt. i spektr., 131 (6), 825 (2023) (in Russian). DOI: 10.21883/OS.2023.06.55917.109-23
  46. I.L. Fufurin, D.R. Anfimov, E.R. Kareva, A.V. Scherbakova, P.P. Demkin, A.N. Morozov, I.S. Golyak. Opt. Eng., 60 (8), 082016 (2021). DOI: 10.1117/1.OE.60.8.082016
  47. NIST Chemistry WebBook. [Electronic resource]. 1996. Date of update: 01.2023. URL: https://webbook.nist.gov/chemistry/ (date of application: 29.12.2023). DOI: 10.18434/T4D303

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru