The electrochemical profiling of n^+/n GaAs structures for field-effect transistors
Protasov D. Yu.1,2, Kamesh P. P. 2, Svit K. A.1, Dmitriev D. V.1, Makeeva A. A. 1, Rzaev E. M. 3, Zhuravlev K. S. 1
1Rzhanov Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
2Novosibirsk State Technical University, Novosibirsk, Russia
3Zelenograd Nanotechnology Center, Zelenograd, Russia
Email: protasov@corp.nstu.ru
It is shown that when using a standard electrochemical profiling recipe that applies intensive illumination by halogen lamp with power up to 250 W of n^+/n GaAs structure to generate the holes necessary for etching, the resulting electron distribution profile differs from that set during growth for an electron concentration in the n^+-layer >4· 1018 cm-3 when using EDTA electrolyte. This difference is due to the appearance and development of etching pits caused by the increase in the degree of defectivity of GaAs layers with increasing concentration of the donor impurity - silicon. To obtain adequate electron distribution profiles in n^+/n GaAs structures it is necessary to limit the illumination up to 25 W. Keywords: elecrochemical profiling, n^+/n GaAs, etching defects, concentration profile distortions.
- P. Blood. Semicond. Sci. Technol., 1, 7 (1986)
- http://www.wepcontrol.com/cv-profiler/
- K.S. Zhuravlev, D.Yu. Protasov, A.K. Bakarov, A.I. Toropov, D.V. Gulyaev, V.G. Lapin, V.M. Lukashin, A.B. Pashkovskii. Optoelectron., Instrum. Data Process., 56 (5), 478 (2020)
- A.B. Pashkovskii, S.A. Bogdanov, A.K. Bakarov, A.B. Grigorenko, K.S. Zhuravlev, V.G. Lapin, V.M. Lukashin, I.A. Rogachev, E.V. Tereshkin, S.V. Shcherbakov. IEEE Trans. Electron Dev., 68 (1), 53 (2021)
- D. Yu Protasov, D.V. Dmitriev, K.S. Zhuravlev, G.I. Ayzenshtat, A.Y. Yushchenko, A.B. Pashkovsky. Mater. Sci. Semicond. Process., 153, 107148 (2023)
- M.O. Petrushkov, D.S. Abramkin, E.A. Emelyanov, M.A. Putyato, O.S. Komkov, D.D. Firsov, A.V. Vasev, M.Yu. Yesin, A.K. Bakarov, I.D. Loshkarev, A.K. Gutakovskii, V.V. Atuchin, V.V. Preobrazhenskii. Nanomaterials, 12, 4449 (2022)
- G.E. Yakovlev, M.V. Dorokhin, V.I. Zubkov, A.L. Dudin, A.V. Zdoroveishchev, E.I. Malysheva, Yu.A. Danilov, B.N. Zvonkov, A.V. Kudrin. Semiconductors 52 (8), 1004 (2018)
- George Yakovlev, Vasily Zubkov. J. Solid State Electrochem., 25, 797 (2021)
- T. Clarysse, G. Brammertz, D. Vanhaeren, P. Eyben, J. Goossens, F. Clemente, M. Meuris, W. Vandervorst, R. Srnanek, R. Kinder, B. Sciana, D. Radziewicz, Zhiqiang Li. Mater. Sci. Semicond. Process., 11, 259 (2008)
- M. Kaniewska, I. Slomka. Cryst. Res. Technol., 36 (8-10), 1113 (2001)
- P.A. Kohl, F.W. Ostermayer. Ann. Rev. Mater. Sci., 19, 379 (1989)
- Z. Mazouz, L. Beji, J. Meddeb, H. Ben Ouada. Arabian J. Chemistry, 4, 473 (2011)
- Emna Ben Amara, Amira Lebib, Lotfi Beji. J. Electron. Mater., 49 (9), 5281 (2020)
- A.R. Clawson. Mater. Sci. Engin., 31, 1 (2001)
- E.V. Kuchis. Gal'vanomagnitnye effekty i metody ikh issledovaniya (M., Radio i Svyaz', 1990). (in Russian)
- D.L. Rode. Semiconductors and Semimetals, Transport Phenomena (Academic Press, N.Y., 1975) v. 10, p. 1
- A.A. Nechitailov, E.V. Astrova. Tech. Phys. Lett., 33 (8), 682 (2007)
- E.V. Astrova, A.A. Nechitailov. Semiconductors, 42 (4), 470 (2008)
- J. Gebauer, R. Krause-Rehberg, C. Domke, Ph. Ebert, K. Urban. Phys. Rev. Lett., 78, 3334 (1997)
- John E. Northrup, S.B. Zhang. Phys. Rev. B, 47 (11), 6791(R) (1993)
- V. Swaminathan. Bull. Mater. Sci., 4 (4), 403 (1982)
- Akos Nemcsics, Janos P. Makai. FTP, 37 (6), 657 (2003)
- M. Kayambaki, K. Tsagaraki, M. Lagadas, P. Panayotatos. Mater. Sci. Engin. B, 80, 164 (2001)
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.