Creep of vortices and magnetic flux percolation in high-temperature superconducting composites
The effect of magnetic flux percolation on the creep resistance in superconducting composites containing normal-phase fractal clusters has been studied. An exact solution has been obtained for the voltage induced by the magnetic flux creep taking into account both forward and backward vortex hopping. It has been found that the Anderson-Kim creep resistance in a percolative superconductor exceeds the collective creep resistance at an equivalent height of the pinning barrier. Keywords: creep, percolation, vortex, pinning, critical current.
- T. Matsushita, Flux pinning in superconductors, ed. by K. von Klitzing, H.-J. Queisser, B. Keimer, A. Gulian, S. Rogge, Springer Ser. in Solid-State Sciences (Springer-Verlag, Berlin-Heidelberg, 2022), vol. 198, p. 493. DOI: 10.1007/978-3-030-94639-5
- Yu.I. Kuzmin, Phys. Lett. A, 267 (1), 66 (2000). DOI: 10.1016/S0375-9601(00)00081-5
- J. Jiang, S.I. Hossain, S. Barua, T.A. Oloye, J. Kvitkovic, F. Kametani, U.P. Trociewitz, E.E. Hellstrom, D.C. Larbalestier, D.E. Bugaris, C. Goggin, Y. Huang, J.A. Parrell, T. Shen, IEEE Trans. Appl. Supercond., 33 (5), 6400105 (2023). DOI: 10.1109/TASC.2023.3236870
- Y. Iijima, K. Onabe, N. Futaki, N. Tanabe, N. Sadakata, O. Kohno, Y. Ikeno, J. Appl. Phys., 74 (3), 1905 (1993). DOI: 10.1063/1.354801
- A. Goyal, D.P. Norton, J.D. Budai, M. Paranthaman, E.D. Specht, D.M. Kroeger, D.K. Christen, Q. He, B. Saffian, F.A. List, D.F. Lee, D.F. Martin, C.E. Klabunde, E. Hartfield, V.K. Sikka, Appl. Phys. Lett., 69 (12), 1795 (1996). DOI: 10.1063/1.117489
- A.Koblischka-Veneva, N. Sakai, S. Tajima, M. Murakami, in: Handbook of superconducting materials, ed. by D.A. Cardwell, D.S. Ginley (Institute of Physics Publ., Bristol and Philadelphia, 2003), vol. 1, p. 893--945. DOI: 10.1887/0750308982
- B.B. Mandelbrot, The fractal geometry of nature (Freeman, San Francisco, 1982), p. 497
- Yu.I. Kuzmin, Phys. Rev. B, 64 (9), 094519 (2001). DOI: 10.1103/PhysRevB.64.094519
- R.E. Hetzel, A. Sudb, D.A. Huse, Phys. Rev. Lett., 20 (3), 518 (1992). DOI: 10.1103/PhysRevLett.69.518
- N.M. Strickland, A.A. Soman, N.J. Long, P. Kluth, C. Notthoff, M.W. Rupich, S.C. Wimbush, IEEE Trans. Appl. Supercond., 33 (5), 8000205 (2023). DOI: 10.1109/TASC.2023.3240384
- T. Ito, Y. Ichino, Y. Tsuchiya, K. Yasuda, A. Ichinose, Y. Yoshida, IEEE Trans. Appl. Supercond., 31 (5), 6601205 (2021). DOI: 10.1109/TASC.2021.3071143
- E. Galstyan, R. Pratap, M. Paidpilli, G. Majkic, V. Selvamanickam, IEEE Trans. Appl. Supercond., 31 (5), 8000405 (2021). DOI: 10.1109/TASC.2021.3061904
- A.A. Soman, S.C. Wimbush, N.J. Long, M.W. Rupich, C. Notthoff, P. Kluth, J. Leveneur, J. Kennedy, N.M. Strickland, IEEE Trans. Appl. Supercond., 33 (5), 6600805 (2023). DOI: 10.1109/TASC.2023.3244522
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.