Magnetocaloric features of the NiMn1-xCrxGe system due to the diffuse nature of the first-order structural transitions P6_3/mmc↔ Pnma
Valkov V. I.
1, Golovchan A. V.
1, Gribanov I. F.
1, Kovalev O. E.
1, Mitsiuk V. I.
21Galkin Donetsk Institute for Physics and Engineering, Donetsk, Russia
2Scientific Practical Materials Research Centre of NAS of Belarus, Minsk, Belarus
Email: valkov09@gmail.com, golovchan1@yandex.ru, gribanig@mail.ru, oleg_kovalev_2018@mail.ru, mitsiuk@physics.by
An approach is proposed to describe the magnetostructural features of the Mn1-xCrxNiGe system within the concept of diffuse first-order phase transitions. The approach is based on the combination of two models for describing first-order structural transitions hex(P6_3/mmc)↔orth(Pnma). The microscopic model of first-order point transitions is used to describe the phase state of a homogeneous medium of an orthorhombic phase nucleus. The thermodynamic model of redistribution of nuclei of both phases of a heterogeneous medium of a sample under the action of the entropy of mixing is used to describe the macroscopic phase state. Within the framework of the model used, an explanation is given for three types of phase transitions observed in systems with structural instability. It is shown that the reversible and first-order magnetostructural transitions observed in samples x=0.18, x=0.25, respectively, can be realized in sample x=0.11 with an isostructural second-order magnetic transition when the sample is subjected to hydrostatic pressure. Keywords: diffuse structural phase transitions, diffuse magnetostructural 1-st order phase transitions, heterogeneous medium, helimagnetism.
- V.I. Val'kov, V.I. Kamenev, V.I. Mitsiuk, I.F. Gribanov, A.V. Golovchan, T.Yu. Delikatnaya. FTT 59, 266 (2017). (in Russian)
- S.V. Vonsovsky. Magnetizm. Nauka, M. (1971). 1032 p. (in Russian)
- B.N. Rolov, V.E. Yurkevitch. Fizika razmytykh fazovykh perekhodov. Izd-vo Postovsk. un-ta, R/na-Donu. (1983). 320 s. (in Russian)
- A. Malygin. UFN 71, 1, 187 (2001). (in Russian)
- A.A. Bokov. Ferroelectrics 183, 65 (1996)
- A.A. Bokov. ZhETF 111, 5, 1817 (1997). (in Russian)
- V.I. Val'kov, I.F. Gribanov, E.P. Andreychenko, O.E. Kovalev, V.I. Mitsiuk. FTT 65, 10, 1758 (2023). (in Russian)
- V.I. Val'kov, A.V. Golovchan, O.E. Kovalev, N.Yu. Nirkov. FTVD 33, 4, 36 (2023). (in Russian)
- Ya.I. Frenkel'. Statistical physics. Publisher AS USSR, M.-L. (1948). 760 s. (in Russian)
- L.S. Metlov, V.V. Koledov, V.G. Shavrov. FTVD 28, 1, 46 (2018). (in Russian)
- L.S. Metlov, V.D. Poimanov. FTVD 28, 1, 62 (2018). (in Russian)
- L.S. Metlov. FTVD 29, 1, 28 (2019). (in Russian)
- L.S. Metlov, A.G. Petrenko. FTVD 28, 3, 46 (2018). (in Russian)
- L.S. Metlov, V.V. Koledov, V.G. Shavrov, Yu.D. Zavorotnev, Yu.V. Tehtelev. FTVD 30, 2, 56 (2020). (in Russian)
- B. Penca, A. Hoserb, S. Barana, A. Szytutaa. Phase Transit. 91, 2, 118 (2018)
- V.I. Val'kov, V.I. Kamenev, A.V. Golovchan, I.F. Gribanov, V.V. Koledov, V.G. Shavrov, V.I. Mitsiuk, P. Duda. FTT 63, 5, 628 (2021). (in Russian)
- A. Szytuta, S. Baran, T. Jaworska-Gota, M. Marzec, A. Deptuch, Yu. Tyvanchuk, B. Penc, A. Hoser, A. Sivachenko, V. Val'kov, V. Dyakonov, H. Szymczak. J. Alloys Comp. 726, 978 (2017)
- V.I. Valkov, A.V. Golovchan, I.F. Gribanov, E.P. Andreychenko, O.E. Kovalev, V.I. Mitsiuk, A.V. Mashirov. FMM 124, 11, 1044 (2023). (In Russian)
- I.F. Gribanov, V.V. Burkhovetsky, V.I. Val'kov, A.V. Golovchan, V.D. Zaporozhets, V.I. Kamenev. T.S. Sivachenko. FTVD 30, 1, 83 (2020). (in Russian)
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.