Investigations of Microscopic X-ray tomography
Gaikovich K. P. 1, Malyshev I. V. 1, Reunov D. G.1, Chkhalo N. I. 1
1Institute for Physics of Microstructures, Russian Academy of Sciences, Nizhny Novgorod, Russia
Email: gaikovich@mail.ru

PDF
As a result of the development of the theory of the geometric-optical approach in X-ray tomography, numerical modeling and optimization based on the results of experimental data, an X-ray tomography algorithm was developed that implements a resolution of 0.14 μm, exceeding the resolution achievable in optical systems. The method was applied in the tomographic analysis of lily of the valley cells, where numerous small (0.001-0.003 μm-1) absorption inhomogeneities in the form of rings 1-2 pixels thick (0.14-0.28 μm) were found, presumably cross sections of the shells of spheroidal bodies. The discovered oblate of the rings in the vertical section allowed us to conclude about the shape of these bodies. In order to distinguish the smallest details in the reconstruction of a plant cell from artifacts, numerical modeling was performed using test objects comparable in absorption and size, which were embedded in the previously obtained cell reconstruction. The results confirmed the above-mentioned resolution with high sensitivity to changes in the absorption coefficient. Keywords: X-ray microscopy, absorption coefficient, inverse problem, numerical modeling, tomography of plant cells.
  1. I.V. Malyshev, D.G. Reunov, N.I. Chkhalo. Opt. Expr., 30 (26), 47567 (2022). DOI: 10.1364/OE.475032
  2. K.P. Gaikovich, I.V. Malyshev, D.G. Reunov, N.I. Chkhalo. ZhTF, 93 (7), 867 (2023). (in Russian). DOI: 10.21883/JTF.2023.07.55739.106-23
  3. E. Hanssen, C. Knoechel, M. Dearnley, M.W.A. Dixon, M. Le Gros, C. Larabell, L. Tilley. J. Structural Biology, 177 (2), 224 (2012). DOI: 10.1016/j.jsb.2011.09.003
  4. D. Sage, L. Donati, F. Soulez, D.G. Schmit, A. Seitz, R. Guiet, C. Vonesch, M. Unser. Methods, 115, 28 (2017). DOI: 10.1016/j.ymeth.2016.12.015
  5. G. Vicidomini, P. Bianchini, A. Diaspro. Nat. Methods, 15, 173 (2018)
  6. V. Luv cic, A. Rigort, W. Baumeister. J. Cell Biol., 202 (3), 407 (2013)
  7. K.E. Leigh, P.P. Navarro, S. Scaramuzza, W. Chen, Yi. Zhang, D. Castano-Di ez, M. Kudryashev. Methods Cell Biol., 152, 217 (2019). DOI: 10.1016/bs.mcb.2019.04.003
  8. P.A.C. Takman, H. Stollberg, G.A. Johansson, A. Holmberg, M. Lindblom, H.M. Hertz. J. Microscopy, 226, 175 (2007)
  9. C.A. Larabell, M.A. Le Gros. Molecular Biology Cell, 15, 9572 (2004)
  10. D. Weib, G. Schneider, B. Niemann, P. Guttmann, D. Rudolph, G. Schmah. Ultramicroscopy, 84, 185 (2000)
  11. M. Bertilson, O. von Hofsten, U. Vogt, A. Holmberg, E. Athanasia, Christakou, H.M. Hertz. Opt. Lett., 36 (14), 2728 (2011)
  12. M. Bertilson, O. von Hofsten, U. Vogt, A. Holmberg, H.M. Hertz. Opt. Expr., 17 (13), 11057 (2009)
  13. M. Toyoda, K. Yamasoe, T. Hatano, M. Yanagihara, A. Tokimasa, T. Harada, T. Watanabe, H. Kinoshita. Appl. Phys. Express, 5 (11), 112501 (2012)
  14. L. Juschkin, R. Freiberger, K. Bergmann. J. Phys.: Conf. Ser., 186, 012030 (2009)
  15. A. Torrisi, P. Wachulak, . Wegrzyn'ski, T. Fok, A. Bartnik, T. Parkman, v S. Vondrova, J. Tturnova, B.J. Jankiewicz, B. Bartosewicz, H. Fiedorowicz. J. Microscopy, 265 (2), 1 (2016). DOI: 10.1111/jmi.12494
  16. P.W. Wachulak, A. Torrisi, A. Bartnik, . Wegrzyn'ski, T. Fok, H. Fiedorowicz. Appl. Phys. B, 123, 25 (2017)
  17. T. Ejima, F. Ishida, H. Murata, M. Toyoda, T. Harada, T. Tsuru, T. Hatano, M. Yanagihara, M. Yamamoto, H. Mizutani. Opt. Express, 18 (7), 7203 (2010)
  18. A.V. Vodop'yanov, S.A. Garakhin, I.G. Zabrodin, S.Yu. Zuev, A.Ya. Lopatin, A.N. Nechay, A.E. Pestov, A.A. Perekalov, R.S. Pleshkov, V.N. Polkovnikov. Quantum Electronicsthis, 51 (8), 700 (2021).
  19. I.V. Malyshev, A.E. Pestov, V.N. Polkovnikov, N.N. Salashchenko, M.N. Toropov, N.I. Chkhalo. Poverkhnost. Rentgenovskie, sinkhrotronnye i nejtronnye issledovaniya, 1, 3 (2019). (in Russian)
  20. N.I. Chkhalo, M.N. Drozdov, E.B. Kluenkov, S.V. Kuzin, A.Ya. Lopatin, V.I. Luchin, N.N. Salashchenko, N.N. Tsybin, S.Yu. Zuev. Appl. Optics, 55 (17), 4683 (2016)
  21. J. Radon. Akad. Wiss., 69, 262 (1917)
  22. A.N. Tikhonov, V.Ya. Arsenin. Metody resheniya nekorrektnykh zadach (Nauka, M., 1986) (in Russian)
  23. A.N. Tikhonov, V.Ya. Arsenin, A.A. Timonov. Matematicheskie zadachi komp'yuternoj tomografii (Nauka, M., 1987) (in Russian)
  24. A.N. Tikhonov, A.V. Goncharsky, I.V. Kochikov, E.I. Rau, D.O. Savin, G.V. Spivak, V.V. Stepanov. DAN SSSR, 289 (5), 1104 (1986) (in Russian)
  25. A.N. Tikhonov, P.N. Bochikashvili, A.V. Goncharsky, A.N. Matvienko, E.I. Rau, D.O. Savin, V.V. Stepanov. DAN SSSR, 296 (5), 1095 (1987) (in Russian)
  26. K.P. Gaikovich. Inverse Problems in Physical Diagnostics (Nova Science Publishers Inc., NY., 2004)

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru