Electron lithography of non-simply patterned magnetic mesoparticles
Tatarskiy D. A.1,2, Skorokhodov E. V.1, Pashen'kin I.Yu.1, Gusev S. A.1
1 Institute for physics of microstructure RAS, Nizhny Novgorod, Russia
2Lobachevsky State University, Nizhny Novgorod, Russia
Email: tatarsky@ipmras.ru

PDF
Currently, patterned magnetic structures are of great interest in connection with their potential application in spintronics as generators of microwave radiation and memory elements. In particular, two-dimensional lattices of ferromagnetic disks, in which the vortex magnetization distribution is realized, are a promising system. In this work, the latest methods of electron lithography and ion etching have been developed, allowing for a high degree allows to get high-quality particles of a given shape and size. A study of the microstructures and magnetic states of non-simply connected magnetic particles from permalloy films was carried out using analytical and Lorentz transmission electron microscopy. The experimental results demonstrate good agreement with the data obtained by micromagnetic modeling. Keywords: electron lithography, ion etching, Lorentz transmission electron microscopy.
  1. R.P. Cowburn, D.K. Koltsov, A.O. Adeyeye, M.E. Welland, D.M. Tricker. Phys. Rev. Lett., 83, 1042 (1999). DOI: 10.1103/PhysRevLett.83.1042
  2. K.L. Metlov, Y. Lee. Appl. Phys. Lett., 92, 11 (2008). DOI: 10.1063/1.2898888
  3. D.A. Tatarsky, V.L. Mironov, A.A. Fraerman. ZhETF 142, 366 (2023) (in Russian). DOI: 10.31857/S0044451023030082
  4. K.S. Buchanan, P.E. Roy, M. Grimsditch, F.Y. Fradin, K.Yu. Guslienko, S.D. Bader, V. Novosad. Nat. Phys., 1, 172 (2005). DOI: 10.1038/nphys173
  5. L.S. Metlov. Pis'ma v ZhETF 118, 95 (2023). (in Russian). DOI: 10.31857/S1234567823140057
  6. D.A. Tatarskiy, A.N. Orlova, E.V. Skorokhodov, I.Yu. Pashenkin, V.L. Mironov, S.A. Gusev. JMMM, 590, 171580 (2024). DOI: 10.1016/j.jmmm.2023.171580
  7. M. Schneider, H. Hoffmann, J. Zweck. Appl. Phys. Lett., 77, 2909 (2000). DOI: 10.1063/1.1320465
  8. S.A. Nepijko, G. Schonhense. Appl. Phys. A, 96, 671 (2009). DOI: 10.1007/s00339-009-5131-4
  9. M. Schneider, H. Hoffmann, J. Zweck. Appl. Phys. Lett., 79, 3113 (2001). DOI: 10.1063/1.1410873
  10. P. Vavassori, N. Zaluzec, V. Metlushko, V. Novosad, B. Ilic, M. Grimsditch. Phys. Rev. B, 69, 214404 (2004). DOI: 10.1103/PhysRevB.69.214404
  11. S.A. Gusev, D.A. Tatarsky, A.Yu. Klimov, V.V. Rogov, E.V. Skorokhodov, M.V. Sapozhnikov, B.A. Gribkov, I.M. Nefedov, A.A. Fraerman. FTT 55, 435 (2013) (in Russian)
  12. S.N. Vdovichev, B.A. gribkov, S.A. Gusev, V.L. Mironov, D.S. Nikitushkin, A.A. Fraerman, V.B. Shvetsov. FTT 48, 1791 (2006) (in Russian)
  13. S. Ma, C. Con, M. Yavuz, Bo Cui. Nanoscale Res. Lett., 6 (1), 446 (2011). DOI: 10.1186/1556-276X-6-446
  14. B. Bilenberg, M. Sch ler, P. Shi, M.S. Schmidt, P. B ggild, M. Fink, C. Schuster, F. Reuther, C. Gruetzner, A. Kristensen. J. Vac. Sci. Technol. B, 24, 1776 (2006). DOI: 10.1116/1.2210002
  15. S.M. Lewis, G.A. DeRose, H.R. Alty, M.S. Hunt, N. Lee, J.A. Mann, R. Grindell, A. Wertheim, L. De Rose, A. Fernandez, C.A. Muryn, G.F.S. Whitehead, G.A. Timco, A. Scherer, R.E.P. Winpenny. Adv. Func. Mater., 32, 2202710 (2022). DOI: 10.1002/adfm.202202710
  16. R. Andok, K. Vutova, A. Bencurova, I. Kostic, E. Koleva. J. Phys.: Conf. Ser., 2443, 012006 (2023). DOI: 10.1088/1742-6596/2443/1/012006
  17. K. Kato, Y. Liu, Sh. Murakami, Y. Morita, T. Mori, Nanotech., 32, 485301 (2021). DOI: 10.1088/1361-6528/ac201b
  18. I. Zailer, J.E.F. Frost, V. Chabasseur-Molyneux, C.J.B. Fordand, M. Pepper. Semicond. Sci. Technol., 11, 1235 (1996). DOI: 10.1088/0268-1242/11/8/021
  19. H. Yang, A. Jin, Q. Luo, J. Li, Ch. Gu, Z. Cui. Microelectron. Engineer., 85, 814 (2008). DOI: 10.1016/j.mee.2008.01.006
  20. P. Schnauber, R. Schmidt, A. Kaganskiy, T. Heuser, M. Gschrey, S. Rodt, S. Reitzenstein. Nanotech., 27, 195301 (2016). DOI: 10.1088/0957-4484/27/19/195301
  21. D.A. Tatarskiy, N.S. Gusev, S.A. Gusev. Ultramicroscopy, 253, 113822 (2023). https://doi.org/10.1016/j.ultramic.2023.113822
  22. D.G. Reunov, N.S. Gusev, M.S. Mikhailenko, D.V. Petrova, I.V. Malyshev, N.I. Chkhalo. ZhTF, 93 (7), 1032 (2023). (in Russian). DOI: 10.21883/JTF.2023.07.55765.105-23
  23. R. Heilbronner. Tectonophysics, 212, 351 (1992). DOI: 10.1016/0040-1951(92)90300-U
  24. B. Zang, K. Suzuki, A. Liu. Mater. Characterization, 142, 577 (2018)
  25. A. Vansteenkiste, J. Leliaert, M. Dvornik, M. Helsen, F. Garcia-Sanchez, B. Van Waeyenberg. AIP Adv., 4, 107133 (2014). DOI: 10.1063/1.4899186
  26. S. McVitie, M. Cushley. Ultramicroscopy, 106, 423 (2006). DOI: 10.1016/j.ultramic.2005.12.001

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru