Study of capacitive and inductive elements using high-quality superconducting resonators
Yusupov R. A. 1, Filippenko L. V. 1, Fominskiy M. Yu 1, Koshelets V. P. 1
1Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Moscow, Russia
Email: yusupovrenat@hitech.cplire.ru, lyudmila@hitech.cplire.ru, ffke@yandex.ru

PDF
A method for measuring the electrical parameters of integrated circuit elements using high-quality superconducting resonators has been proposed and implemented. Structures were manufactured consisting of a coplanar waveguide line with resonators connected to it in a capacitive manner. The transmission spectra of a microwave signal along such a line were measured. A comparison is made of the numerical calculation of test structures with the transmission spectra measured in the experiment. The values of the coupling capacitances of the transmission line with the resonators are determined. The parameters of the resonator loads, which are capacitive and inductive elements, have been determined. The obtained values were analyzed and the reliability of the methodology used was assessed. Keywords: superconducting integrated circuits, coplanar waveguide line, superconducting coplanar resonator, SQUID, SIS junction, microwave measurements, signal transmission spectrum, vector network analyzer, cryogenic measurements.
  1. G. Wendin, Rep. Progr. Phys., 80 (10), 106001 (2017). DOI: 10.1088/1361-6633/aa7e1a
  2. R. Kleiner, D. Koelle, F. Ludwig, J. Clarke. Proceed. IEEE, 92 (10), 1534 (2004). DOI: 10.1109/JPROC.2004.833655
  3. M.T. Bell., A. Samolov. Phys. Rev. Appl., 4 (2), 024014 (2015). DOI: 10.1103/PhysRevApplied.4.024014
  4. C. Macklin, K. O'brien, D. Hover, M.E. Schwartz, V. Bolkhovsky, X. Zhang, W.D. Oliver, I. Siddiqi. Science, 350 (6258), 307 (2015). DOI: 10.1126/science.aaa8525
  5. A.B. Zorin. Phys. Rev. Appl., 6 (3), 034006 (2016). DOI: 10.1103/PhysRevApplied.6.034006
  6. A.B. Zorin. Phys. Rev. Appl., 12 (4), 044051 (2019). DOI: 10.1103/PhysRevApplied.12.044051
  7. C. Bartram, T. Braine, R. Cervantes, N. Crisosto, N. Du, G. Leum, P. Mohapatra, T. Nitta, L.J. Rosenberg, G. Rybka, J. Yang, J. Clarke, I. Siddiqi, A. Agrawal, A.V. Dixit, M.H. Awida, A.S. Chou, M. Hollister, S. Knirck, A. Sonnenschein, W. Wester, J.R. Gleason, A.T. Hipp, S. Jois, P. Sikivie, N.S. Sullivan, D.B. Tanner, E. Lentz, R. Khatiwada, G. Carosi, C. Cisneros, N. Robertson, N. Woollett, D. Duffy, C. Boutan, M. Jones, B.H. LaRoque, N.S. Oblath, M.S. Taubman, E.J. Daw, M.G. Perry, J.H. Buckley, C. Gaikwad, J. Hoffman, K. Murch, M. Goryachev, B.T. McAllister, A. Quiskamp, C. Thomson, M.E. Tobar, V. Bolkhovsky, G. Calusine, W. Oliver, K. Serniak. Rev. Sci. Instrum., 94 (4), 044703 (2023) DOI: 10.1063/5.0122907
  8. R.A. Yusupov, L.V. Filippenko, M.Y. Fominskiy, V.P. Koshelets. Phys. Solid State, 64 (8), 467 (2022). DOI: 10.1134/S1063783422090086
  9. A. Blais, R.S. Huang, A. Wallraff, S.M. Girvin, R.J. Schoelkopf. Phys. Rev. A, 69 (6), 062320 (2004). DOI: 10.1103/PhysRevA.69.062320
  10. P.K. Day, H.G. LeDuc, B.A. Mazin, A. Vayonakis, J. Zmuidzinas. Nature, 425, 817 (2003). DOI: 10.1038/nature02037
  11. R. Barends, H.L. Hortensius, T. Zijlstra, J.J.A. Baselmans, S.J.C. Yates, J.R. Gao, T.M. Klapwijk. Appl. Phys. Lett., 92, 223502 (2008). DOI: 10.1063/1.2937837
  12. W. Rauch, E. Gornik, G. Solkner, A.A. Valenzuela, F. Fox, H. Behner. J. Appl. Phys., 73, 1866 (1993). DOI: 10.1063/1.353173
  13. M. Goppl, A. Fragner, M. Baur, R. Bianchetti, S. Filipp, J.M. Fink, P.J. Leek, G. Puebla, L. Steffen, A. Wallraff. J. Appl. Phys., 104, 113904 (2008). DOI: 10.1063/1.3010859
  14. D. Bothner, M. Knufinke, H. Hattermann, R. Wolbing, B. Ferdinand, P. Weiss, S. Bernon, J. Fortagh, D. Koelle, R. Kleiner. New J. Phys., 15, 093024 (2013). DOI: 10.1088/1367-2630/15/9/093024
  15. H. Kroger, L.N. Smith, D.W. Jillie. Appl. Phys. Lett., 39 (3), 280 (1981). DOI: 10.1063/1.92672
  16. V. Ambegaokar, A. Baratoff. Phys. Rev. Lett., 10 (11), 486 (1963). DOI: 10.1103/PhysRevLett.10.486
  17. R.A. Yusupov, L.V. Filippenko, D.E. Bazulin, N.V. Kolotinskiy, M.A. Tarasov, E. Goldobin. IEEE Transactions Appl. Superconduct., 32 (4), 1700105 (2022). DOI: 10.1109/TASC.2021.3131134
  18. R.A. Yusupov, L.V. Filippenko, V.P. Koshelets. Conf. Proceed. 2023 Radiation and Scattering of Electromagnetic Waves (RSEMW), 124 (2023). DOI: 10.1109/RSEMW58451.2023.10202097
  19. S. Butz, P. Jung, L.V. Filippenko, V.P. Koshelets, A.V. Ustinov, Supercond. Sci. Technol., 26, 094003 (2013). DOI: 10.1088/0953-2048/26/9/094003
  20. J. Zotova, R. Wang, A. Semenov, Y. Zhou, I. Khrapach, A. Tomonaga, O. Astafiev, J.S. Tsai. Phys. Rev. Appl., 19 (4), 044067 (2023). DOI: 10.1103/PhysRevApplied.19.044067

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru