Aspects of image formation in compound refractive lenses in the soft X-ray wavelength range
Glagolev P. Yu. 1, Demin G. D. 1, Korneev V. I. 1, Djuzhev N. A. 1
1National Research University of Electronic Technology, Zelenograd, Moscow, Russia
Email: glagolev@ckp-miet.ru

PDF
The possibility of using compound refractive lenses as elements of X-ray optics designed to form an image on an X-ray resist in the soft X-ray wavelength range is discussed. For this purpose, a mathematical simulation of the transformation of the wave front as it passes through the optical system under consideration was carried out. The intensity distribution of the X-ray radiation wavefront with a wavelength varied from 2 to 14 nm at the input/output of a compound refractive lens and in the plane of the substrate with X-ray resist is calculated. Promising materials (Si, Be, diamond) of compound refractive lenses, which have high transparency for the selected wavelengths, are considered. It has been shown that the transition to diffractive and kinoform lenses minimizes the degree of absorption of X-ray radiation in the lens material by several orders of magnitude, which makes it possible to increase the resolution up to 14 nm. The results of the study can be used in the development of new optical systems based on a transparent mask and a compound refractive lens, which are applicable for X-ray nanolithography tasks. Keywords: X-ray nanolithography, X-ray radiation, compound refractive lens, kinoform lenses, resolution, numerical aperture.
  1. D.V. Sirotin. Econ. Rev. Rus., 3 (69), 105 (2021). DOI: 10.37930/1990-9780-2021-3-69-105-122
  2. N.N. Kulikova. Teoriya i praktika obshchestvennogo razvitiya, 12, 87 (2017). DOI: 10.24158/tipor.2017.12.19
  3. V. Bakshi. EUV Lithography, Second edition (SPIE Press, Bellingham, Washington, USA, 2018)
  4. C. Smeets, N. Benders, F. Bornebroek, J. Carbone, R. Van Es, A. Minnaert, G. Salmaso, S. Young. Optical and EUV Nanolithography XXXVI, ed. by A. Lio, M. Burkhardt (SPIE, San Jose, United States, 2023), p. 9, DOI: 10.1117/12.2658046
  5. S. Amano, K. Masuda, A. Shimoura, S. Miyamoto, T. Mochizuki. Appl. Phys. B, 101 (1-2), 213 (2010). DOI: 10.1007/s00340-010-3997-7
  6. M. Richardson, C.-S. Koay, K. Takenoshita, C. Keyser, M. Al-Rabban. J. Vacuum Sci. Technol. B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 22 (2), 785 (2004). DOI: 10.1116/1.1667511
  7. N.I. Chkhalo, K.V. Durov, A.N. Nechay, A.A. Perekalov, V.N. Polkovnikov, N.N. Salashchenko. J. Surf. Investig., 17 (S1), S226 (2023). DOI: 10.1134/S1027451023070078
  8. V.N. Polkovnikov, N.N. Salashchenko, M.V. Svechnikov, N.I. Chkhalo. Phys.-Usp., 63 (1), 83 (2020). DOI: 10.3367/UFNe.2019.05.038623
  9. N.I. Chkhalo, S.A. Gusev, A.N. Nechay, D.E. Pariev, V.N. Polkovnikov, N.N. Salashchenko, F. Schafers, M.G. Sertsu, A. Sokolov, M.V. Svechnikov, D.A. Tatarsky. Opt. Lett., 42 (24), 5070 (2017). DOI: 10.1364/OL.42.005070
  10. N.I. Chkhalo, N.N. Salashchenko. AIP Adv., 3 (8), 082130 (2013). DOI: 10.1063/1.4820354
  11. C. Montcalm, S. Bajt, P. Mirkarimi, E. Spiller, F. Weber, J. Folta. SPIE, 3331, 42 (1998). DOI: 10.1117/12.309600
  12. M.V. Svechnikov, N.I. Chkhalo, S.A. Gusev, A.N. Nechay, D.E. Pariev, A.E. Pestov, V.N. Polkovnikov, D.A. Tatarskiy, N.N. Salashchenko, Y.A. Vainer, M.V. Zorina, F. Schafers, M.G. Sertsu, A. Sokolov. Opt. Express, 26 (26), 33718 (2018). DOI: 10.1364/OE.26.033718
  13. D.S. Kuznetsov, A.E. Yakshin, J.M. Sturm, R.W.E. Van De Kruijs, E. Louis, F. Bijkerk. Opt. Lett., 40 (16), 3778 (2015). DOI: 10.1364/OL.40.003778
  14. C. Burcklen, S. de Rossi, E. Meltchakov, D. Dennetiere, B. Capitanio, F. Polack, F. Delmotte. Opt. Lett., 42 (10), 1927 (2017). DOI: 10.1364/OL.42.001927
  15. I.A. Artyukov, Y. Bugayev, O.Yu. Devizenko, R.M. Feschenko, Y.S. Kasyanov, V.V. Kondratenko, S.A. Romanova, S.V. Saveliev, F. Schafers, T. Feigl, Y.A. Uspenski, A.V. Vinogradov. Proc. SPIE, 5919, 59190E (2005). DOI: 10.1117/12.620037
  16. I. Snigireva, M. Polikarpov, A. Snigirev. Synchrotron Radiation News, 34 (6), 12 (2021). DOI: 10.1080/08940886.2021.2022387
  17. V.G. Kohn, JETP Lett., 76 (10), 600 (2002). DOI: 10.1134/1.1541043
  18. V. Kohn, I. Snigireva, A. Snigirev. Opt. Commun., 216 (4-6), 247 (2003). DOI: 10.1016/S0030-4018(02)02285-X
  19. A. Snigirev, V. Kohn, I. Snigireva, B. Lengeler. Nature, 384 (6604), 49 (1996). DOI: 10.1038/384049a0
  20. A. Snigirev, V. Kohn, I. Snigireva, A. Souvorov, B. Lengeler. Appl. Opt., 37 (4), 653 (1998). DOI: 10.1364/AO.37.000653
  21. V.G. Kohn, M.S. Folomeshkin. J. Synchrotron Rad., 28 (2), 419 (2021). DOI: 10.1107/S1600577520016495
  22. V. Aristov, M. Grigoriev, S. Kuznetsov, L. Shabelnikov, V. Yunkin, T. Weitkamp, C. Rau, I. Snigireva, A. Snigirev, M. Hoffmann, E. Voges. Appl. Phys. Lett., 77 (24), 4058 (2000). DOI: 10.1063/1.1332401
  23. D. Faklis, G.M. Morris. Appl. Opt., 34 (14), 2462 (1995). DOI: 10.1364/AO.34.002462

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru