Dispersion of a double metal waveguide of a quantum cascade laser in the optical phonon region of GaAs
Zhmud B. A.
1,2, Sobolev A. S.
2, Spirin K. E.
3, Ponomarev D. S.
1,2, Khabibullin R. A.
1,2,41 Institute of Ultra High Frequency Semiconductor Electronics of RAS, Moscow, Russia
2Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Moscow Region, Russia
3Lebedev Physical Institute, Russian Academy of Sciences, Moscow, Russia
4Ioffe Institute, St. Petersburg, Russia
Email: zhmud.ba@phystech.edu, sobolev.as@mipt.ru, ponomarev_dmitr@mail.ru, khabibullin.ra@mipt.ru
Analytical calculations of the dispersion characteristics of the guided modes in a double metal (DM) waveguide of a quantum cascade laser (QCL) in the optical phonon region in GaAs based on the modified Marcatili method are presented. The calculation results correlate well with the results of the numerical solution of the Helmholtz equation at optical phonon frequencies of GaAs. It is shown that the dominant mode E00y far from the phonon resonance of GaAs ceases to be such for frequencies near this resonance, what makes E10y mode the dominant mode at these frequencies. Keywords: terahertz frequency, terahertz lasers, semiconductors, quantum cascade laser, dispersion, waveguide, Marcatili method.
- M.S. Vitiello, A. Tredicucci, Adv. Phys. X, 6 (1), 1893809 (2021). DOI: 10.1080/23746149.2021.1893809
- A.E. Yachmenev, R.A. Khabibullin, D.S. Ponomarev, J. Phys. D: Appl. Phys., 55 (19), 193001 (2022). DOI: 10.1088/1361-6463/ac43dd
- A. Khalatpour, M.C. Tam, S.J. Addamane, J. Reno, Z. Wasilewski, Q. Hu, Appl. Phys. Lett., 122 (16), 161101 (2023). DOI: 10.1063/5.0144705
- S. Ek, P. Lunnemann, Y. Chen, E. Semenova, K. Yvind, J. Mork, Nat. Commun., 5, 5039 (2014). DOI: 10.1038/ncomms6039
- E.A. Marcatili, Bell Syst. Tech. J., 48 (7), 2071 (1969). DOI: 10.1002/j.1538-7305.1969.tb01166.x
- A. Zangwill, Modern electrodynamics (Cambridge University Press, 2013)
- J. Blakemore, J. Appl. Phys., 53 (10), R123 (1982). DOI: 10.1063/1.331665
- S. Adachi, J. Appl. Phys., 58 (3), R1 (1985). DOI: 10.1063/1.336070
- M. Sotoodeh, A. Khalid, A. Rezazadeh, J. Appl. Phys., 87 (6), 2890 (2000). DOI: 10.1063/1.372274
- G. Irmer, M. Wenzel, J. Monecke, Phys. Status Solidi B, 195 (1), 85 (1996). DOI: 10.1002/pssb.2221950110
- R.A. Khabibullin, N.V. Shchavruk, A.N. Klochkov, I.A. Glinskiy, N.V. Zenchenko, D.S. Ponomarev, P.P. Maltsev, A.A. Zaycev, F.I. Zubov, A.E. Zhukov, G.E. Cirlin, Zh.I. Alferov, Semiconductors, 51 (4), 514 (2017). DOI: 10.1134/S106378261704008X
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.