Quantum-cascade lasers based on an active region with low sensitivity to thickness fluctuations
Babichev A. V.1, Kolodeznyi E. S.1, Mikhailov D. A.2, Dudelev V. V.2, Gladyshev A. G.1, Slipchenko S. O.2, Lyutetskii A. V.2, Karachinsky L. Ya.1, Novikov I. I.1, Sokolovskii G. S.2, Pikhtin N. A.2, Egorov A. Yu.1
1ITMO University, St. Petersburg, Russia
2Ioffe Institute, St. Petersburg, Russia
Email: a.babichev@mail.ioffe.ru
The results of the study of ridge quantum-cascade lasers of the 8 μm spectral range based on the design of the active region with escape from the lower laser level through scattering by a longitudinal optical phonon and subsequent extraction of charge carriers into the injector layers through the miniband are presented. The use of an active region based on 35 periods forming a cascade and the use of InP waveguide claddings with a thickness of ≥ 3.5 μm, along with the use of additional confining InGaAs layers, made it possible to realize effective heat removal from the active region and a high optical confinement factor (~ 68%). Increasing the injector doping level made it possible to realize a peak output optical power of the order of ~ 3.6 W with a total wall-plug efficiency of about ~ 6%. Keywords: Superlattices, quantum-cascade laser, molecular-beam epitaxy, metalorganic vapor phase epitaxy, indium phosphide.
- M. Troccoli, IEEE J. Sel. Top. Quantum Electron., 21 (6), 61 (2015). DOI: 10.1109/JSTQE.2015.2413954
- K. Fujita, S. Furuta, A. Sugiyama, T. Ochiai, T. Edamura, N. Akikusa, M. Yamanishi, H. Kan, IEEE J. Quantum Electron., 46 (5), 683 (2010). DOI: 10.1109/jqe.2010.2048015
- B. Shin, A. Lin, K. Lappo, R.S. Goldman, M.C. Hanna, S. Francoeur, A.G. Norman, A. Mascarenhas, Appl. Phys. Lett., 80 (18), 3292 (2002). DOI: 10.1063/1.1476386
- C.A. Wang, R.K. Huang, A. Goyal, J.P. Donnelly, D.R. Calawa, S.G. Cann, F. O'Donnell, J.J. Plant, L.J. Missaggia, G.W. Turner, A. Sanchez-Rubio, J. Cryst. Growth, 310 (23), 5191 (2008). DOI: 10.1016/j.jcrysgro.2008.07.100
- R.D. Twesten, D.M. Follstaedt, S.R. Lee, E.D. Jones, J.L. Reno, J.M. Millunchick, A.G. Norman, S.P. Ahrenkiel, A. Mascarenhas, Phys. Rev. B, 60 (19), 13619 (1999). DOI: 10.1103/physrevb.60.13619
- B. Schwarz, C.A. Wang, L. Missaggia, T.S. Mansuripur, P. Chevalier, M.K. Connors, D. McNulty, J. Cederberg, G. Strasser, F. Capasso, ACS Photon., 4 (5), 1225 (2017). DOI: 10.1021/acsphotonics.7b00133
- K. Fujita, S. Furuta, A. Sugiyama, T. Ochiai, T. Edamura, N. Akikusa, M. Yamanishi, H. Kan, Appl. Phys. Lett., 91 (14), 141121 (2007). DOI: 10.1063/1.2795793
- C.A. Wang, B. Schwarz, D.F. Siriani, M.K. Connors, L.J. Missaggia, D.R. Calawa, D. McNulty, A. Akey, M.C. Zheng, J.P. Donnelly, T.S. Mansuripur, F.J. Capasso, J. Cryst. Growth, 464, 215 (2017). DOI: 10.1016/j.jcrysgro.2016.11.029
- Y. Chiu, Y. Dikmelik, P.Q. Liu, N.L. Aung, J.B. Khurgin, C.F. Gmachl, Appl. Phys. Lett., 101 (17), 171117 (2012). DOI: 10.1063/1.4764516
- J.D. Kirch, C.-C. Chang, C. Boyle, L.J. Mawst, D. Lindberg, T. Earles, D. Botez, Opt. Express, 24 (21), 24483 (2016). DOI: 10.1364/oe.24.024483
- R. Maulini, A. Lyakh, A. Tsekoun, R. Go, C. Pflugl, L. Diehl, F. Capasso, C.K.N. Patel, Appl. Phys. Lett., 95 (15), 151112 (2009). DOI: 10.1063/1.3246799
- T. Aellen, M. Beck, N. Hoyler, M. Giovannini, J. Faist, J. Appl. Phys., 100 (4), 043101 (2006). DOI: 10.1063/1.2234804
- D. Botez, J.D. Kirch, C. Boyle, K.M. Oresick, C. Sigler, H. Kim, B.B. Knipfer, J.H. Ryu, D. Lindberg, T. Earles, L.J. Mawst, Y.V. Flores, Opt. Mater. Express, 8 (5), 1378 (2018). DOI: 10.1364/ome.8.001378
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.