The use of advanced Bragg reflectors for frequency stabilization and tuning in planar surface-wave oscillators
Peskov N. Yu. 1,2,3, Zaslavsky V. Yu. 1,2,3, Leshcheva K.A. 1,2,3
1Federal Research Center A.V. Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences, Nizhny Novgorod, Russia
2Budker Institute of Nuclear Physics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
3Lobachevsky State University, Nizhny Novgorod, Russia
Email: peskov@ipfran.ru, zas-vladislav@ipfran.ru, leshcheva@ipfran.ru

PDF
To achieve high coherence of radiation in oversized Cherenkov surface-wave oscillators (SWO), the use of an additional resonant Bragg reflector of an advanced type based on the coupling of paraxial and quasi-cutoff waves is proposed. Within the framework of the conducted 3D PIC - simulations, it is shown that the reflectors of this type make it possible to provide a stable narrow-band generation regime in SWO of a planar geometry with excitation of the fundamental mode of the slow-wave structure at an oversize parameter (width) of about 7-10 radiation wavelengths. An additional advantage of the proposed planar generator is the possibility of mechanical frequency tuning when changing the gap size of the resonant reflector. The parameters for the implementation of powerful W-band SWO based on the high-current accelerator complex "ELMI" (BINP RAS) have been evaluated. Keywords: relativistic Cherenkov generators, high-power microwave radiation, Bragg resonators, mode selection.
  1. A.F. Aleksandrov, S.Yu. Galuzo, V.I. Kanavets, V.A. Pletyushkin, Zh. Tekh. Fiz., 51 (8), 1727 (1981) (in Russian)
  2. S.P. Bugaev, V.I. Kanavets, A.I. Klimov, V.I. Koshelev, V.A. Cherepenin, Pis'ma Zh. Tekh. Fiz., 9 (22), 1385 (1983) (in Russian)
  3. S.P. Bugaev, V.A. Cherepenin, V.I. Kanavets, A.I. Klimov, A.D. Kopenkin, V.I. Koshelev, V.A. Popov, A.I. Slepkov, IEEE Trans. Plasma Sci., 18 (3), 525 (1990). DOI: 10.1109/27.55924
  4. A.N. Vlasov, A.G. Shkvarunets, J.C. Rodgers, Y. Carmel, T.M. Antonsen, T.M. Abuelfadl, D. Lingze, V.A. Cherepenin, G.S. Nusinovich, M. Botton, V.L. Granatstein, IEEE Trans. Plasma Sci., 28 (3), 550 (2000). DOI: 10.1109/27.887671
  5. V.A. Cherepenin, Phys. Usp., 49 (10), 1097 (2006). DOI: 10.3367/UFNr.0176.200610l.1124 [V.A. Cherepenin, Phys. Usp., 49 (10), 1097 (2006). DOI: 10.1070/PU2006v049n10ABEH006109]
  6. J. Wang, G. Wang, D. Wang, S. Li, P. Zeng, Sci. Rep., 8 (1), 6978 (2018). DOI: 10.1038/s41598-018-25466-w
  7. M. Aoki, Y. Annaka, K. Ogura, M. Ito, Jpn. J. Appl. Phys., 60 (9), 096004 (2021). DOI: 10.35848/1347-4065/ac1de9
  8. Y. Annaka, K. Ogura, M. Aoki, S. Hamada, T. Kato, M. Ito, Plasma Fusion Res., 17, 2406036 (2022). DOI: 10.1585/pfr.17.2406036
  9. N.S. Ginzburg, V.Yu. Zaslavsky, A.M. Malkin, A.S. Sergeev, Tech. Phys., 58 (2), 267 (2013). DOI: 10.1134/S1063784213020102
  10. N.Yu. Peskov, V.Yu. Zaslavsky, A.N. Denisenko, E.B. Abubakirov, A.M. Malkin, M.D. Proyavin, A.S. Sergeev, N.S. Ginzburg, IEEE Electr. Device Lett., 44 (10), 1756 (2023). DOI: 10.1109/LED.2023.3307201
  11. A.V. Arzhannikov, N.S. Ginzburg, P.V. Kalinin, A.M. Malkin, N.Yu. Peskov, A.S. Sergeev, S.L. Sinitsky, M. Thumm, V.Yu. Zaslavsky, Appl. Phys. Lett., 101 (8), 083507 (2012). DOI: 10.1063/1.4747149
  12. N.Yu. Peskov, N.S. Ginzburg, I.I. Golubev, S.M. Golubykh, A.K. Kaminsky, A.P. Kozlov, A.M. Malkin, S.N. Sedykh, A.S. Sergeev, A.I. Sidorov, V.Yu. Zaslavsky, Appl. Phys. Lett., 116 (21), 213505 (2020). DOI: 10.1063/5.0006047
  13. N.F. Kovalev, I.M. Orlova, M.I. Petelin, Radiophys. Quantum Electron., 11, 449 (1968). DOI: 10.1007/BF01034380
  14. V.L. Bratman, N.S. Ginzburg, G.G. Denisov, Pis'ma Zh. Tekh. Fiz., 7 (21), 1320 (1981) (in Russian)
  15. A. Yariv, Quantum electronics (John Wiley and Sons, Inc., N.Y., 1975)
  16. N.Yu. Peskov, A.V. Arzhannikov, V.I. Belousov, N.S. Ginzburg, V.Yu. Zaslavsky, D.A. Nikiforov, Yu.S. Oparina, A.V. Savilov, E.S. Sandalov, S.L. Sinitsky, D.I. Sobolev, Bull. Russ. Acad. Sci. Phys., 87 (5), 669 (2023). DOI: 10.3103/S1062873822701842
  17. I.K. Kurkan, V.V. Rostov, E.M. Tot'meninov, Tech. Phys. Lett., 24 (5), 388 (1998). DOI: 10.1134/1.1262101
  18. S.D. Korovin, I.K. Kurkan, V.V. Rostov, E.M. Tot'meninov, Radiophys. Quantum Electron., 42 (12), 1047 (1999). DOI: 10.1007/BF02677128
  19. A.V. Arzhannikov, N.S. Ginzburg, P.V. Kalinin, A.M. Malkin, I.V. Martyanov, N.Yu. Peskov, D.A. Samtsov, E.S. Sandalov, A.S. Sergeev, S.L. Sinitsky, V.D. Stepanov, A.A. Vikharev, V.Yu. Zaslavsky, IEEE Trans. Electr. Devices, 69 (5), 2662 (2022). DOI: 10.1109/TED.2022.3161899

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru