Drop in external quantum efficiency during cooling and noise density during heating in InGaN ultraviolet LEDs
Ivanov A. M.
1, Klochkov A. V.1
1Ioffe Institute, St. Petersburg, Russia
Email: alexandr.ivanov@mail.ioffe.ru, alex.klo@mail.ioffe.ru
It has been shown that for ultraviolet InGaN/GaN industrial LEDs in a practical temperature range from -74 to 84oC, a decrease in the density of low-frequency noise during heating and a drop in the external quantum efficiency during cooling can occur. The observed features of the experimental dependences are explained on the basis of the physical mechanisms of carrier transport, primarily tunneling along defects and tails of the density of states in the band gap of a semiconductor. Keywords: low-frequency noise, quantum efficiency, carrier transport, hopping tunnel conduction.
- F.I. Manyakhin, Semiconductors, 52 (3), 359 (2018). DOI: 10.1134/S1063782618030168
- R. Abbasinejad, D. Kacprzak, Clean. Eng. Technol., 9, 100518 (2022). DOI: 10.1016/j.clet.2022.100518
- H. Xiu, Y. Zhang, J. Fu, Z. Ma, L. Zhao, J. Feng, Curr. Appl. Phys., 19 (1), 20 (2019). DOI: 10.1016/j.cap.2018.10.019
- N.I. Bochkareva, Y.G. Shreter, Phys. Solid State, 64 (3), 371 (2022). DOI: 10.21883/PSS.2022.03.53193.241
- N.A. Poklonski, S.A. Vyrko, I.I. Anikeev, A.G. Zabrodskii, Semiconductors, 56 (11), 823 (2022). DOI: 10.21883/SC.2022.11.54957.9945
- Z. Peng, W. Guo, T. Wu, Z. Guo, Y. Lu, Y. Zheng, Y. Lin, Z. Chen, IEEE Photon. J., 12 (1), 8200108 (2020). DOI: 10.1109/JPHOT.2019.2958311
- P. Tian, J.J.D. McKendry, J. Herrnsdorf, S. Watson, R. Ferreira, I.M. Watson, E. Gu, A.E. Kelly, M.D. Dawson, Appl. Phys. Lett., 105 (17), 171107 (2014). DOI: 10.1063/1.4900865
- D. Monti, M. Meneghini, C. De Santi, G. Meneghesso, E. Zanoni, IEEE Trans. Dev. Mater. Reliab., 16 (2), 213 (2016). DOI: 10.1109/TDMR.2016.2558473
- D.S. Arteev, A.V. Sakharov, A.E. Nikolaev, W.V. Lundin, A.F. Tsatsulnikov, J. Lumin., 234, 117957 (2021). DOI: 10.1016/j.jlumin.2021.117957
- A.M. Ivanov, A.V. Klochkov, Semiconductors, 56 (6), 431 (2022). DOI: 10.21883/SC.2022.06.53546.9817
- N.I. Bochkareva, A.M. Ivanov, A.V. Klochkov, V.A. Tarala, Yu.G. Shreter, Tech. Phys. Lett., 42 (11), 1099 (2016). DOI: 10.1134/S1063785016110146
- A.S. Pavluchenko, I.V. Rozhansky, D.A. Zakheim, Semiconductors, 43 (10), 1351 (2009). DOI: 10.1134/S1063782609100170
- P. Sahare, B.K. Sahoo, Mater. Today: Proc., 28, 74 (2020). DOI: 10.1016/j.matpr.2020.01.303
- N.I. Solin, S.V. Naumov, Phys. Solid State, 45 (3), 486 (2003). DOI: 10.1134/1.1562235
- M. Auf der Maur, B. Galler, I. Pietzonka, M. Strassburg, H. Lugauer, A. Di Carlo, Appl. Phys. Lett., 105 (13), 133504 (2014). DOI: 10.1063/1.4896970
- B. vSaulys, J. Matukas, V. Palenskis, S. Pralgauskaite, G. Kulikauskas, Acta Phys. Pol. A, 119 (4), 514 (2011). DOI: 10.12693/APhysPolA.119.514
- A.E. Chernyakov, M.E. Levinshtein, N.A. Talnishnikh, E.I. Shabunina, N.M. Shmidt, J. Cryst. Growth., 401, 302 (2014). DOI: 10.1016/j.jcrysgro.2013.11.097
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.