Drop in external quantum efficiency during cooling and noise density during heating in InGaN ultraviolet LEDs
Ivanov A. M. 1, Klochkov A. V.1
1Ioffe Institute, St. Petersburg, Russia
Email: alexandr.ivanov@mail.ioffe.ru, alex.klo@mail.ioffe.ru

PDF
It has been shown that for ultraviolet InGaN/GaN industrial LEDs in a practical temperature range from -74 to 84oC, a decrease in the density of low-frequency noise during heating and a drop in the external quantum efficiency during cooling can occur. The observed features of the experimental dependences are explained on the basis of the physical mechanisms of carrier transport, primarily tunneling along defects and tails of the density of states in the band gap of a semiconductor. Keywords: low-frequency noise, quantum efficiency, carrier transport, hopping tunnel conduction.
  1. F.I. Manyakhin, Semiconductors, 52 (3), 359 (2018). DOI: 10.1134/S1063782618030168
  2. R. Abbasinejad, D. Kacprzak, Clean. Eng. Technol., 9, 100518 (2022). DOI: 10.1016/j.clet.2022.100518
  3. H. Xiu, Y. Zhang, J. Fu, Z. Ma, L. Zhao, J. Feng, Curr. Appl. Phys., 19 (1), 20 (2019). DOI: 10.1016/j.cap.2018.10.019
  4. N.I. Bochkareva, Y.G. Shreter, Phys. Solid State, 64 (3), 371 (2022). DOI: 10.21883/PSS.2022.03.53193.241
  5. N.A. Poklonski, S.A. Vyrko, I.I. Anikeev, A.G. Zabrodskii, Semiconductors, 56 (11), 823 (2022). DOI: 10.21883/SC.2022.11.54957.9945
  6. Z. Peng, W. Guo, T. Wu, Z. Guo, Y. Lu, Y. Zheng, Y. Lin, Z. Chen, IEEE Photon. J., 12 (1), 8200108 (2020). DOI: 10.1109/JPHOT.2019.2958311
  7. P. Tian, J.J.D. McKendry, J. Herrnsdorf, S. Watson, R. Ferreira, I.M. Watson, E. Gu, A.E. Kelly, M.D. Dawson, Appl. Phys. Lett., 105 (17), 171107 (2014). DOI: 10.1063/1.4900865
  8. D. Monti, M. Meneghini, C. De Santi, G. Meneghesso, E. Zanoni, IEEE Trans. Dev. Mater. Reliab., 16 (2), 213 (2016). DOI: 10.1109/TDMR.2016.2558473
  9. D.S. Arteev, A.V. Sakharov, A.E. Nikolaev, W.V. Lundin, A.F. Tsatsulnikov, J. Lumin., 234, 117957 (2021). DOI: 10.1016/j.jlumin.2021.117957
  10. A.M. Ivanov, A.V. Klochkov, Semiconductors, 56 (6), 431 (2022). DOI: 10.21883/SC.2022.06.53546.9817
  11. N.I. Bochkareva, A.M. Ivanov, A.V. Klochkov, V.A. Tarala, Yu.G. Shreter, Tech. Phys. Lett., 42 (11), 1099 (2016). DOI: 10.1134/S1063785016110146
  12. A.S. Pavluchenko, I.V. Rozhansky, D.A. Zakheim, Semiconductors, 43 (10), 1351 (2009). DOI: 10.1134/S1063782609100170
  13. P. Sahare, B.K. Sahoo, Mater. Today: Proc., 28, 74 (2020). DOI: 10.1016/j.matpr.2020.01.303
  14. N.I. Solin, S.V. Naumov, Phys. Solid State, 45 (3), 486 (2003). DOI: 10.1134/1.1562235
  15. M. Auf der Maur, B. Galler, I. Pietzonka, M. Strassburg, H. Lugauer, A. Di Carlo, Appl. Phys. Lett., 105 (13), 133504 (2014). DOI: 10.1063/1.4896970
  16. B. vSaulys, J. Matukas, V. Palenskis, S. Pralgauskaite, G. Kulikauskas, Acta Phys. Pol. A, 119 (4), 514 (2011). DOI: 10.12693/APhysPolA.119.514
  17. A.E. Chernyakov, M.E. Levinshtein, N.A. Talnishnikh, E.I. Shabunina, N.M. Shmidt, J. Cryst. Growth., 401, 302 (2014). DOI: 10.1016/j.jcrysgro.2013.11.097

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru