Microwave absorption properties of ferroelectric piezoceramic materials
Astafev P.A. 1, Pavelko A.A. 1, Andryushin K.P. 1, Borzykh A.R.2, Reizenkind J.A. 1, Lerer A.M. 2, Glazunova E.V. 1, Shilkina L.A. 1, Reznichenko L.A. 1
1Scientific Research Institute of Physics, Southern Federal University, Rostov-on-Don, Russia
2Southern Federal University, Rostov-on-Don, Russia
Email: Astafev@sfedu.ru

PDF
The results of a study in the microwave range of the microwave absorbing properties of piezoceramic materials developed at the Scientific Research Institute of Physics of the Southern Federal University and based mainly on the PbTiO3-PbZrO3 system are presented in comparison with industrial composite materials based on carbonyl iron and epoxy resin and materials of industrial dielectric resonators. A technique for measuring and calculating the parameters of samples of the materials under study is described. The relationship between the microwave absorbing properties of the ceramics under study and their phase composition has been established. An assessment has been made of the applicability of the developed piezoceramic materials in microwave technology devices Keywords: ferroelectrics, piezoelectric, microwave absorption, microstrip line.
  1. A.Ya. Dantsiger, O.N. Razumovskaya, L.A. Reznichenko, V.P. Sakhnenko, A.N. Klevtsov, S.I. Dudkina, L.A. Shilkina, N.V. Dergunova, A.N. Rybyanets, Mnogokomponentnye sistemy segnetoelektricheskikh slozhnykh oksidov: fizika, kristallokhimiya, tekhnologiya. Aspekty dizaina p'ezoelektricheskikh materialov (Izd. Rostov. Gos. Univ., Rostov-on-Don, 2001), Vols. 1, 2 (in Russian)
  2. P. Muralt, J. Am. Ceram. Soc., 91 (5), 1385 (2008). DOI: 10.1111/j.1551-2916.2008.02421.x
  3. G.L. Smith, J.S. Pulskamp, L.M. Sanchez, D.M. Potrepka, R.M. Proie, T.G. Ivanov, R.Q. Rudy, W.D. Nothwang, S.S. Bedair, C.D. Meyer, J. Am. Ceram. Soc., 95 (6), 1777 (2012). DOI: 10.1111/j.1551-2916.2012.05155.x
  4. J.S. Pulskamp, R.G. Polcawich, R.Q. Rudy, S.S. Bedair, R.M. Proie, T. Ivanov, G.L. Smith, MRS Bull., 37 (11), 1062 (2012). DOI: 10.1557/mrs.2012.269
  5. Y. He, B. Bahr, M. Si, P. Ye, D. Weinstein, Microsyst. Nanoeng., 6 (1), 8 (2020). DOI: 10.1038/s41378-019-0110-1
  6. B. Munjal, H. Trivedi, P. Sarma, J. Intell. Mater. Syst. Struct., 19 (11), 1281 (2008). DOI: 10.1177/1045389X07085515
  7. M.A. Ahmad, F. Coccetti, R. Plana, MRS Online Proceedings Library, 1075, 10750301 (2008). DOI: 10.1557/PROC-1075-J03-01
  8. A.Ya. Dantsiger, O.N. Razumovskaja, L.A. Reznitchenko, L.D. Grineva, S.I. Dudkina, S.V. Gavrilyatchenko, N.V. Bergunova, in Proc. 1994 IEEE Int. Symp. on applications of ferroelectrics (IEEE, 1994), p. 175--177. DOI: 10.1109/ISAF.1994.522330
  9. K. Okazaki, Tekhnologiya keramicheskikh dielektrikov (Energiya, M., 1976) (in Russian)
  10. S.-W. Chen, L.-C. Chang, J.Y. Chin, in 1986 IEEE MTT-S Int. Microwave Symp. Digest (IEEE, 1986), p. 593--596. DOI: 10.1109/MWSYM.1986.1132255
  11. D. Micheli, C. Apollo, R. Pastore, M. Marchetti, Compos. Sci. Technol., 70 (2), 400 (2010). DOI: 10.1016/j.compscitech.2009.11.015
  12. Z. Wang, G.-L. Zhao, J. Mater. Chem. C, 2 (44), 9406 (2014). DOI: 10.1039/C4TC01540A
  13. D. Kajfez, P. Guillon, Dielectric resonators (Artech House, Norwood, 1986)
  14. A. Guinier. Theorie et technique de la radiocristallographie, 2nd ed. (Dunod, Paris, 1956)
  15. I. Andryushina, L. Reznichenko, L. Shilkina, K. Andryushin, S. Dudkina, Ceram. Int., 39 (2), 1285 (2013). DOI: 10.1016/j.ceramint.2012.07.060

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru