Anisotropy of polarization of interband photoluminescence in n-InAs induced by electric field
Adamov R. B. 1, Vinnichenko M. Ya. 1, Kharin N. Yu. 1, Karaulov D.A. 1, Firsov D. A. 1
1Peter the Great Saint-Petersburg Polytechnic University, St. Petersburg, Russia
Email: roma.adamow@gmail.com, mvin@spbstu.ru, harin_nyu@spbstu.ru, donil793@yandex.ru, dmfir@rphf.spbstu.ru

PDF
The degree of linear polarization of interband photoluminescence in an InAs crystal doped with donors in an electric field was calculated. The polarization anisotropy arises due to the anisotropy of the electron distribution function over states in momentum space, associated with the electron drift in the electric field, and the dependence of the optical matrix elements on the angle between the polarization vector and the electron wave vector. A quasi-equilibrium distribution function shifted in velocity space was used. The electron temperature was determined from the power balance equation. The effect of nonequilibrium phonon accumulation was taken into account in calculating the rate of energy loss by hot electrons. The nonparabolicity of the conduction band was taken into account using the Kane dispersion law. Keywords: distribution function anisotropy, interband photoluminescence, polarization anisotropy, electron temperature.
  1. C.V. Shah, B.P. Zakharchenya. Spectroscopy of nonequilibrium electrons and phonons (Modern Problems in Condensed Matter Sciences). (Elsevier, Amsterdam, 1992). https://doi.org/10.1016/C2009-0-13015-5
  2. K. Jarusirirangsi, P. van Dommelen, C. Daengngam. J. Nanomater., 2021 (1), 5606173 (2021). https://doi.org/10.1155/2021/5606173
  3. E.L. Ivchenko. Optical Spectroscopy of Semiconductor Nanostructure (Alpha Science, 2005)
  4. T. Trupke, R.A. Bardos, M.D. Abbott. Appl. Phys. Lett., 87, 184102 (2005). http://dx.doi.org/10.1063/1.2119411
  5. Ch.H. Lui, K.F. Mak, J. Shan, T.F. Heinz. Phys. Rev. Lett., 105, 127404 (2010). https://doi.org/10.1103/PhysRevLett.105.127404
  6. J.A. Ferrer-Perez, B. Claflin, D. Jena, M. Sen, R. Vetury, D. Dorsey. J. Electron. Mater., 43 (2), 341 (2014). https://doi.org/10.1007/s11664-013-2841-3
  7. C. Zhang, Y. Luo, S.A. Maier, X. Li. Laser Photonics Rev., 16 (6), 2100714 (2022). https://doi.org/10.1002/lpor.202100714
  8. W. Shao, W. Cui, Y. Xin, J. Hu, X. Li. Nanotechnology, 35 (27), 275201 (2024). https://doi.org/10.1088/1361-6528/ad3739
  9. L. Zhou, Q. Huang, Y. Xia. Chem. Rev., 124 (14), 8597 (2024). https://doi.org/10.1021/acs.chemrev.4c00165
  10. S. Sarkar, I. W. Un, Y. Sivan, Y. Dubi. New J. Phys., 24 (5), 053008 (2022). https://doi.org/10.1088/1367-2630/ac6688
  11. B.P. Zakharchenya, D.N. Mirlin, V.I. Perel', I.I. Reshina. Sov. Phys. Uspekhi, 25, 143 (1982). https://doi.org/10.1070/PU1982v025n03ABEH004519
  12. M.A. Vasil'eva, L.E. Vorob'ev, V.I. Stafeev. Sov. Phys. Semicond., 3, 1374 (1969)
  13. M.D. Yang, Y.P. Chen, G.W. Shu, J.L. Shen, S. C. Hung, G.C. Chi, T.Y. Llin, Y.C. Lee, C.T. Chen, C.H. Ko. Appl. Phys. A, 90, 123 (2008). https://doi.org/10.1007/s00339-007-4281-5
  14. V.A. Shalygin, I.S. Makhov, R.B. Adamov, M.Y. Vinnichenko, V.P. Khvostikov, D.A. Firsov. J. Appl. Phys., 136, 195703 (2024). https://doi.org/10.1063/5.0233573
  15. C.A. Baumgardner, O.W. Truman. Phys. Rev., 173 (3), 746 (1968). https://doi.org/10.1103/PhysRev.173.746
  16. E.M. Conwell. High field transport in semiconductors (Academic Press, N.Y.-London, 1967)
  17. L.E. Vorob'ev, F.I. Osokin. Sov. Phys. Semicond., 13, 873 (1979)
  18. D.J. Lockwood, G. Yu, N.L. Rowell. Solid State Commun., 136 (7), 404 (2005). https://doi.org/10.1016/j.ssc.2005.08.030
  19. H. Hamzeh, F. Aniel. J. Appl. Phys., 109 (6), 063511 (2011). https://doi.org/10.1063/1.3553409
  20. M.P. Hasselbeck, P.M. Enders. Phys. Rev. B, 57, 9674 (1998). https://doi.org/10.1103/PhysRevB.57.9674
  21. N.A. Masyukov, A.V. Dmitriev. J. Appl. Phys., 109 (2), 023706 (2011). https://doi.org/10.1063/1.3533981
  22. I. Vurgaftman, J.R. Meyer, L.R. Ram-Mohan. J. Appl. Phys. 89, 5815 (2001). https://doi.org/10.1063/1.1368156
  23. T. Edvinss. R. Soc. Open Sci., 5 (9), 180387 (2018). http://doi.org/10.1098/rsos.180387
  24. F. Bassani, G.L. Liedl, P. Wyder. Encyclopedia of condensed matter physics (Elsevier, Oxford, 2005). 8.810 https://www.sciencedirect.com/referencework/9780123694010/ encyclopedia-of-condensed-matter-physics
  25. B.R. Bennett, G.M. Ancona, J.B. Boos. MRS Bull., 34 (7), 530 (2009). https://doi.org/10.1557/mrs2009.141

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru