Spectroscopic study of process of carbon ablation from a graphite surface under shock wave influence
Kotov M. A.1,2, Kozlov P. V.1, Levashov V. Yu.1, Gerasimov G. Ya.1, Bykova N. G.1, Zabelinskij I. E.1
1Institute of Mechanics, Lomonosov Moscow State University, Moscow, Russia
2Ishlinsky Institute for Problems in Mechanics, Russian Academy of Sciences, Moscow, Russia
Email: kotov@ipmnet.ru

PDF
The spectral characteristics of the products of graphite surface ablation behind a reflected shock wave in air were studied in the wavelength range from 400 to 1100 nm. The experiments were carried out on a single-diaphragm shock tube. It has been shown that the emission spectrum of ablation products is close to the emission spectrum of an absolutely black body. Additional experiments on the reflection of a shock wave from a quartz surface allow us to conclude that the detected electromagnetic flux is associated with the emission of solid carbon microparticles formed in the air near the graphite surface as a result of the impact of a shock wave on it. Keywords: shock wave, radiation spectrum, ablation, carbon microparticles.
  1. B.A. Cruden, A.M. Brandis, J. Thermophys. Heat Transfer, 34 (1), 154 (2020). DOI: 10.2514/1.T5735
  2. Y. Zhao, H. Huang, Acta Astron., 169, 84 (2020). DOI: 10.1016/j.actaastro.2020.01.002
  3. P.V. Kozlov, N.G. Bykova, G.Ya. Gerasimov, V.Yu. Levashov, M.A. Kotov, I.E. Zabelinsky, Acta Astron., 214, 303 (2024). DOI: 10.1016/j.actaastro.2023.10.033
  4. V.T. Le, N.S. Ha, N.S. Goo, Composites B, 226, 109301 (2021). DOI: 10.1016/j.compositesb.2021.109301
  5. A. Fagnani, B. Helber, A. Hubin, O. Chazot, Meas. Sci. Technol., 34 (7), 075401 (2023). DOI: 10.1088/1361-6501/acc67c
  6. F. Grigat, S. Loehle, F. Zander, S. Fasoulas, in AIAA Scitech 2020 Forum (Orlando, FL, 2020), AIAA paper 2020-1706. DOI: 10.2514/6.2020-1706
  7. G. Radhakrishnan, P.M. Adams, L.S. Bernstein, J. Appl. Phys., 134 (1), 013303 (2023). DOI: 10.1063/5.0153331
  8. S.W. Lewis, R.G. Morgan, T.J. McIntyre, J. Spacecraft Rockets, 53 (5), 887 (2016). DOI: 10.2514/1.A33267
  9. N.N. Mansour, F. Panerai, J. Lachaud, T. Magin, Annu. Rev. Fluid Mech., 56, 549 (2024). DOI: 10.1146/annurev-fluid-030322-010557
  10. A.M. Tereza, P.V. Kozlov, G.Ya. Gerasimov, V.Yu. Levashov, I.E. Zabelinsky, N.G. Bykova, Acta Astron., 204, 705 (2023). DOI: 10.1016/j.actaastro.2021.11.001
  11. A chemical equilibrium program for Windows [Electronic source]. http://www.gaseq.co.uk/
  12. C. Park, G.A. Raiche II, D.M. Driver, J. Thermophys. Heat Transfer, 18 (4), 519 (2004). DOI: 10.2514/1.8098
  13. A. Martin, C.C. Bailey, F. Panerai, R.S.C. Davuluri, H. Zhang, A.R. Vazsonyi, Z.S. Lippay, N.N. Mansour, J.A. Inman, B.F. Bathel, S.C. Splinter, P.M. Danehy, CEAS Space J., 8 (4), 229 (2016). DOI: 10.1007/s12567-016-0118-4
  14. K.J. Price, J.M. Hardy, C.G. Borchetta, S.C.C. Bailey, A. Martin, in AIAA Aviation 2020 Forum (Virtual event, 2020), AIAA paper 2020-3279. DOI: 10.2514/6.2020-3279

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru