Goray L. I.
1,2, Berezovskaya T. N.
1,3, Mokhov D. V.
1, Sharov V. A.
1,3, Shubina K. Yu.
1, Pirogov E. V.
1, Dashkov A. S.
11Alferov Federal State Budgetary Institution of Higher Education and Science Saint Petersburg National Research Academic University of the Russian Academy of Sciences, St. Petersburg, Russia
2Institute for Analytical Instrumentation of the Russian Academy of Sciences, Saint Petersburg, Russia
3Ioffe Institute, St. Petersburg, Russia
Email: lig@pcgrate.com, bertana@spbau.ru, dm_mokhov@rambler.ru, vl_sharov@mail.ru, rein.raus.2010@gmail.com, zzzavr@gmail.com
Using direct laser lithography and wet etching of polished vicinal Si(111) wafers, a technology was developed and diffraction gratings 500 grooves/mm with a blaze angle of 4o were fabricated. The manufacturing process of a reflective Si-grating with the triangular profile (sawtooth) can be divided into four main steps: (1) obtaining a pattern of a protective mask for grooves etching; (2) anisotropic etching of grooves in KOH solution; (3) etching to smooth the grating profile and polish the surface of working facets; (4) coating to increase reflectivity. The samples obtained were characterized using scanning electron microscopy and atomic force microscopy methods to determine the shape of the groove profile and roughness: the shape turned out to be close to the ideal triangular, and the RMS roughness was less than 0.3 nm. Using PCGrateTM software and taking into account the measured real groove profile, the diffraction efficiency of gratings operating in classical and conical mounts in soft-X-ray and extreme ultraviolet radiation has been simulated. The obtained efficiency values are close to the record ones for the corresponding spectral range and the Au-coating of the grating. Keywords: diffraction grating, wet etching technology of Si, sawtooth groove profile, AFM, SEM, diffraction efficiency modelling.
- L. Goray, W. Jark, D. Eichert. J. Synchrotron Rad., 25, 1683 (2018). DOI: 10.1107/S1600577518012419
- L.I. Goray, G. Schmidt. Boundary Integral Equation Methods for Conical Diffraction and Short Waves, in Gratings: Theory and Numerical Applications, ed. by E. Popov, 2nd rev. ed. (Institut Fresnel, AMU, 2014), p. 447
- B.V. Egorov, S.Yu. Karpov, M.N. Mizerov. J. Tech. Phys. (in Russian) 54 (10), 1942 (1984)
- P. Philippe, S. Valette, O. Mata Mendez, D. Maystre. Appl. Opt., 24 (7) 1011 (1985). DOI: 10.1364/AO.24.001006
- A.E. Franke, M.L. Schattenburg, E.M. Gullikson, J. Cottam, S.M. Kahn, A. Rasmussen. J. Vac. Sci. Technol. B, 15, 2940 (1997). DOI: 10.1116/1.589759
- I.Y. Yusupov, M.D. Mikhailov, R.R. Herke, L.I. Goray, S.B. Mamedov, O.A. Yakovuk. Proc SPIE, 1238, 240 (1991). DOI: 10.1117/12.19398
- D.L. Voronov, E.H. Anderson, R. Cambie, F. Salmassi, E.M. Gullikson, V.V. Yashchuk, H.A. Padmore, M. Ahn, C.-H. Chang, R.K. Heilmann, M.L. Schattenburg. Proc. SPIE, 7448, 74480J (2009). DOI: 10.1117/12.826921
- I. I. G., Inc. [Electronic source] Available at: URL: http://pcgrate.com (date of access 05.03.2021)
- H. Seidel, L. Csepregi, A. Heuberger, H. Baumgartel. J. Electrochem. Soc., 137 (11), 3612 (1990). DOI: 10.1149/1.2086277
- U.D. Zeitner, T. Fugel-Paul, T. Harzendorf, M. Heusinger, E.-B. Kley. Talk [Electronic source] Available at: URL: http://www.brera.inaf.it/DispersingElements2017/slides/ Zeitner.pdf (date of access 05.03.2021)
- D.L. Voronov, E.M. Gulliskon, H.A. Padmore. Opt. Express, 25 (19), 23334 (2017). DOI: 10.1364/OE.25.023334
- D.M. Miles, J.A. McCoy, R.L. McEntaffer, C.M. Eichfeld, G. Lavallee, M. Labella, W. Drawl, B. Liu, C.T. DeRoo, T. Steiner. Astrophys. J., 869, 95 (2018). DOI: 10.3847/1538-4357/aaec73
- C.-H. Chang, R.K. Heilmann, R.C. Fleming, J. Carter, E. Murphy, M.L. Schattenburg, T.C. Bailey, J.G. Ekerdt, R.D. Frankel, R. Voisin. J. Vac. Sci. Technol. B, 21 (6), 2755 (2003). DOI: 10.1116/1.1627814
- D.L. Voronov, E.H. Anderson, R. Cambie, S. Cabrini, S.D. Dhuey, L.I. Goray, E.M. Gullikson, F. Salmassi, T. Warwick, V.V. Yashchuk, H.A. Padmore. Opt. Express, 19 (7), 6320 (2011). DOI: 10.1364/OE.19.006320
- D.L. Voronov, S. Diez, P. Lum, S.A. Hidalgo, T. Warwick, N. Artemiev, H.A. Padmore. Proc. SPIE, 8848, 88480Q (2013). DOI: 10.1117/12.2024489
- M. Ahn, R.K. Heilmann, M.L. Schattenburg. J. Vac. Sci. Technol. B, 25 (6), 2593 (2007). DOI: 10.1116/1.2779048
- L. Golub, P. Cheimets, E.E. DeLuca, C.A. Madsen, K.K. Reeves, J. Samra, S. Savage, A. Winebarger, A.R. Bruccoleri. J. Space Weather Space Clim., 10, 37 (2020). DOI: 10.1051/swsc/2020040
- M.S. Bibishkin, N.I. Chkhalo, A.A. Fraerman, A.E. Pestov, K.A. Prokhorov, N.N. Salashchenko, Yu.A. Vainer. Nucl. Instrum. Meth. A, 543, 333 (2005). DOI: 10.1016/j.nima.2005.01.251
- D.L. Voronov, P. Gawlitza, R. Cambie, S. Dhuey, E.M. Gullikson, T. Warwick, S. Braun, V.V. Yashchuk, H.A. Padmore. J. Appl. Phys., 111, 093521 (2012). DOI: /10.1063/1.4710985
- J.A. McCoy, R.L. McEntaffer, D.M. Miles. Astrophys. J., 891, 114 (2020). DOI: 10.3847/1538-4357/ab76d3
- A.V. Vinogradov, I.A. Brytov, A.Ya. Grudsky, M.T. Kogan, I.V. Kozhevnikov, V.A. Slemzin. Zerkal?naya rentgenovskaya optika, pod obshch. red. A.V. Vinogradova (Mashinostroenie, L., 1989), 464 s. (in Russian)
- D.L. Voronov, M. Ahn, E.H. Anderson, R. Cambie, C.-H. Chang, L.I. Goray, E.M. Gullikson, R.K. Heilmann, F. Salmassi, M.L. Schattenburg, T. Warwick, V.V. Yashchuk, H.A. Padmore. Proc. SPIE, 7802, 780207 (2010). DOI: 10.1117/12.861287
- L. Goray, M. Lubov. J. Appl. Cryst., 46, 926 (2013). DOI: 10.1107/S0021889813012387
- NTEGRA-Aura SPM. NT-MDT BV [Electronic source] Available at: URL: https://ntmdt.nl/home/products/ntegra-aura/ (access date 05.03.2021)
- L. Goray. J. Synchrotron Rad., 28, 196 (2021). DOI: https://doi.org/10.1107/S160057752001440X
- Center of X-ray Optics [Electronic source] Available at: URL: http://henke.lbl.gov/ (access date 05.03.2021).
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.