Design of a high-resolution VLS monochromator for synchrotron radiation
Shatokhin A. N. 1, Vishnyakov E. A. 1, Kolesnikov A. O. 1, Nikolenko A. D.2,3, Ragozin E. N. 1
1Lebedev Physical Institute, Russian Academy of Sciences, Moscow, Russia
2Budker Institute of Nuclear Physics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
3Boreskov Institute of Catalysis, Siberian Branch of RAS, Novosibirsk, Russia
Email: shatohinal@gmail.com, juk301@mail.ru, alexey6180@gmail.com, enragozin@gmail.com

PDF
A high-resolution monochromator with a broad spectral range of 125-4200 Angstrem is designed for a measuring beamline of the projected synchrotron radiation source "SKIF" (Novosibirsk). The optical configuration of the monochromator comprises a grazing-incidence concave mirror, a plane VLS grating, and an exit slit. It is planned to use two replaceable VLS gratings with central groove frequencies of 600 and 150 mm-1 intended for subranges of 125-1000 Angstrem and 900-4200 Angstrem, respectively. Wavelength tuning in each of the two subranges is carried out by solely the rotation of the VLS-gratings. Due to the proper choice of p1 VLS-grating coefficients, the focal distance varies only slightly over the entire spectral range, and the p2 VLS-grating coefficients are used to suppress the aberrations of the mirror and the gratings. The resolving power of the configuration obtained by numerical ray tracing exceeds 1000 in the 125-1000 Angstrem range and 2000 in the 900-4200 Angstrem range. Keywords: VUV, spectroscopy, VLS-grating, synchrotron radiation.
  1. A.V. Bukhtiyarov, V.I. Bukhtiyarov, A.D. Nikolenko, I.P. Prosvirin, R.I. Kvon, O.E. Tereshchenko. AIP Conf. Proc., 2299, 060003 (2020). DOI: 10.1063/5.0030740
  2. W.R. Hunter, R.T. Williams, J.C. Rife, J.P. Kirkland, M.N. Kabler. Nucl. Instrum. Meth., 195, 141 (1982). DOI: 10.1016/0029-554X(82)90768-6
  3. M.C. Hettrick, J.H. Underwood. AIP Conf. Proc., 147, 237 (1986). DOI: 10.1063/1.35993
  4. M.C. Hettrick, J.H. Underwood, P. Batson, M. Eckart. Appl. Opt., 27 (2), 200 (1988). DOI: 10.1364/AO.27.000200
  5. P. Miotti, N. Fabris, F. Frassetto, C. Spezzani, L. Poletto. AIP Conf. Proc., 2054, 060023 (2019); DOI: 10.1063/1.5084654
  6. E.A. Vishnyakov, A.O. Kolesnikov, A.S. Pirozhkov, E.N. Ragozin, A.N. Shatokhin. Quant. Electron., 48 (10), 916 (2018) [E.A. Vishnyakov, A.O. Kolesnikov, A.S. Pirozhkov, E.N. Ragozin, A.N. Shatokhin. Quant. Electron., 48 (10), 916 (2018)]. DOI: 10.1070/QEL16707
  7. E.N. Ragozin, E.A. Vishnyakov, A.O. Kolesnikov, A.S. Pirozhkov, A.N. Shatokhin. Phys. Usp., 191 (5), 522 (2021). [E.N. Ragozin, E.A. Vishnyakov, A.O. Kolesnikov, A.S. Pirozhkov, A.N. Shatokhin. Phys. Usp., 191 (5), 522 (2021). DOI: 10.3367/UFNe.2020.06.038799]
  8. J. Dunn, E.W. Magee, R. Shepherd, H. Chen, S.B. Hansen, S.J. Moon, G.V. Brown, M.-F. Gu, P. Beiersdorfer, M.A. Purvis. Rev. Sci. Instrum., 79, 10E314 (2008). DOI: 10.1063/1.2968704
  9. T. Harada, H. Sakuma, K. Takahashi, T. Watanabe, H. Hara, T. Kita. Appl. Opt., 37 (28), 6803 (1998). DOI: 10.1364/AO.37.006803
  10. M.C. Hettrick, S. Bowyer. Appl. Opt., 22 (24), 3921 (1983). DOI: 10.1364/AO.22.003921
  11. M.C. Hettrick, S. Bowyer, R.F. Malina, C. Martin, S. Mrowka. Appl. Opt. 24 (12), 1737 (1985). DOI: 10.1364/AO.24.001737
  12. A. Miyake, T. Miyachi, M. Amemiya, T. Hasegawa, N. Ogushi, T. Yamamoto, F. Masaki, Y. Watanabe. Proc. SPIE, 5037, 647 (2003). DOI: 10.1117/12.484969
  13. M. Terauchi, S. Koshiya, F. Satoh, H. Takahashi, N. Handa, T. Murano, M. Koike, T. Imazono, M. Koeda, T. Nagano, H. Sasai, Y. Oue, Z. Yonezawa, S. Kuramoto. Microsc. Microanal., 20, 692 (2014). DOI: 10.1017/S1431927614000439
  14. J.H. Underwood, E.M. Gullikson, M. Koike, S. Mrowka. Proc. SPIE, 3150, 40 (1997). DOI: 10.1117/12.292734
  15. J.-J. Wang, Y.E. Mao, T. Shi, R. Chang, S. Qiao. Chin. Phys. C, 39 (4), 048001 (2015)
  16. L. Du, X. Du, Q. Wang, J. Zhong. Nucl. Instrum. Meth. A, 877, 65 (2018). DOI: 10.1016/j.nima.2017.09.045
  17. O. Fuchs, L. Weinhardt, M. Blum, M. Weigand, E. Umbach, M. Bar, C. Heske, J. Denlinger, Y.-D. Chuang, W. McKinney, Z. Hussain, E. Gullikson, M. Jones, P. Batson, B. Nelles, R. Follath. Rev. Sci. Instrum., 80, 063103 (2009) DOI: 10.1063/1.3133704
  18. T. Warwick, Y.-D. Chuang, D.L. Voronov, H.A. Padmore. J. Synchrotron Radiat., 21, 736 (2014). DOI: 10.1107/S1600577514009692
  19. J. Dvorak, I. Jarrige, V. Bisogni, S. Coburn, W. Leonhardt. Rev. Sci. Instrum., 87, 115109 (2016). DOI: 10.1063/1.4964847
  20. M.A. Cornu. Comptes Rendus Acad. Sci., 117, 1032 (1893)
  21. T. Harada, S. Moriyama, T. Kita. Jpn. J. Appl. Phys., 14 (51), 175 (1975). DOI:10.7567/JJAPS.14S1.175
  22. T. Harada, T. Kita. Appl. Opt., 19 (23), 3987 (1980). DOI: 10.1364/AO.19.003987
  23. T. Kita, T. Harada. Appl. Opt., 31 (10), 1399 (1992). DOI: 10.1364/AO.31.001399
  24. T. Kita, T. Harada, N. Nakano, H. Kuroda. Appl. Opt., 22 (4), 512 (1983). DOI: 10.1364/AO.22.000512
  25. Hettrick Scientific [Electronic source] Available at: http://hettrickscientific.com/
  26. A.O. Kolesnikov, E.A. Vishnyakov, A.N. Shatokhin, E.N. Ragozin. Quant. Electron., 49 (11), 1054 (2019). [A.O. Kolesnikov, E.A. Vishnyakov, A.N. Shatokhin, E.N. Ragozin. Quant. Electron., 49 (11), 1054 (2019). DOI: 10.1070/QEL17074]
  27. A.N. Shatokhin, A.O. Kolesnikov, P.V. Sasorov, E.A. Vishnyakov, E.N. Ragozin. Opt. Express, 26 (15), 19009 (2018). DOI: 10.1364/OE.26.019009
  28. ESRF. XOP (X-ray Oriented Programs) [Electronic source] Available at: https://www.esrf.fr/Instrumentation/ software/ data-analysis/xop2.3

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru