Features of the radiative properties of quantum-size particles of narrow-gap semiconductors
Zhukov N. D.
1, Sergeev S. A.
1, Hazanov A. A.
1, Yagudin I. T.
11Saratov State University, Saratov, Russia
Email: ndzhukov@rambler.ru, ssergeev@bk.ru, alekhaz@yandex.ru, invoker9000@gmail.com
For colloidal quantum-size particles (QP) of narrow-gap semiconductors, in contrast to quantum dots of wide-gap CdSe, in QP-PbS there take place an anomalous temperature dependence of the photoluminescence intensity. Also, in the planar microstructure containing QP-InSb, long-wavelength radiation (more than 3 μm) and photoconductivity (over 20 μm) was observed. Under certain conditions, the radiation intensity and photoconductivity demonstrate a resonance maximum. The effects were explained in the model of a one-dimensional quantum oscillator, which energy substantially depends on the effective mass of its quasi-free electron. This leads to competition between the manifestations of long-wave radiation and photoluminescence, and hence, to the anomalous temperature dependence of photoluminescence. It is assumed that QP-InSb in a planar microstructure can be sources and receivers of terahertz radiation, which properties depend on the crystal structure of quantum-sized particles determined by the parameters of their synthesis. Keywords: quantum-dimensional particle, quantum dot, narrow-gap semiconductor, effective mass, Brillouin zone, dimensional quantization, quantum oscillator, photoluminescence, long-wavelength radiation.
- M. Alizadeh-Ghodsi, M. Pourhassan-Moghaddam, A. Zavari-Nematabad, B. Walker, N. Annabi, A. Akbarzadeh, Part. Part. Syst. Charact., 36 (2), 180030 (2019). DOI: 10.1002/ppsc.201800302
- D. Porotnikov, M. Zamkov, J. Phys. Chem. C, 124 (40), 21895 (2020). DOI: 10.1021/acs.jpcc.0c06868
- N. Sitapure, N. Varadan, S. Malani, P. Goswami, M.A.K. Kerawalla, Int. J. Adv. Res. Eng. Appl. Sci., 5 (6), 29 (2016). https://garph.co.uk/IJAREAS/June2016/3.pdf
- S. Tamang, K. Kim, H. Choi, Y. Kim, S. Jeong, Dalton Trans., 44 (38), 16923 (2015). DOI: 10.1039/c5dt02181b
- S.I. Sadovnikov, N.S. Kozhevnikova, A.A. Rempel, Semiconductors, 44 (10), 1349 (2010). http://journals.ioffe.ru/articles/viewPDF/7252
- N.D. Zhukov, D.V. Kryl'skiy, M.I. Shishkin, A.A. Khazanov, Semiconductors, 53 (8), 1082 (2019). DOI: 10.21883/FTP.2019.08.48002.9037
- D.V. Krylsky, N.D. Zhukov, Tech. Phys. Lett., 45 (8), 801 (2019). DOI: 10.21883/PJTF.2019.16.48147.17665
- A.V. Katsaba, V.V. Fedyanin, S.A. Ambrozevich, A.G. Vitukhnovsky, A.N. Lobanov, A.S. Selyukov, R.B. Vasiliev, I.G. Samatov, P.N. Brunkov, Semiconductors, 47 (10), 1328 (2013). https://doi.org/10.1134/S1063782613100138
- N.D. Zhukov, M.V. Gavrikov, D.V. Kryl'skii, Tech. Phys. Lett., 46 (9), 881 (2020). DOI: 10.21883/PJTF.2020.17.49895.18355
- V.P. Dragunov, I.G. Neizvestnyi, V.A. Gridchin, Osnovy nanoelektroniki (Logos, M., 2006) (in Russian)
- E.V. Maraeva, Poluchenie i issledovanie nanostrukturirovannykh polikristallicheskikh sloev i sistem s kvantovymi tochkami na osnove khal'kogenidov svintsa, Candidate's Dissertation in Mathematics and Physics (S.-Peterb. Gos. Elektrotekh. Univ. "LETI," SPb., 2014) (in Russian)
- N.D. Zhukov, V.F. Kabanov, A.I. Mihaylov, D.S. Mosiyash, A.A. Hazanov, M.I. Shishkin, Semiconductors, 52 (1), 78 (2018). DOI: 10.1134/S1063782618010256
- N.D. Zhukov, I.T. Yagudin, N.P. Aban'shin, D.S. Mosiyash, Tech. Phys. Lett., 46 (11), 1088 (2020). DOI: 10.21883/PJTF.2020.21.50196.18392
- D.V. Krylsky, N.D. Zhukov, Tech. Phys. Lett., 46 (9), 901 (2020). DOI: 10.21883/PJTF.2020.18.49995.18358
- I.S. Gibin, P.E. Kotlyar, Usp. Prikl. Fiz., 6 (2), 117 (2018) (in Russian). http://advance.orion-ir.ru/UPF-18/2/UPF-6-2-117.pdf
- N.D. Zhukov, M.I. Shishkin, A.G. Rokakh, Tech. Phys. Lett., 44 (4), 362 (2018). DOI: 10.1134/S1063785018040284
- L.K. Martinson, E.V. Smirnov. Kvantovaya fizika [Electronic resource] (in Russian). URL: http://fn.bmstu.ru/data-physics/library/physbook/tom5/ch4/texthtml/ch4_5.htm
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.