Discharge of heavy noble gases induced by pulsed gyrotron radiation with 1 THz frequency
Veselov A. P.1, Sidorov A. V.1, Kalynov Yu. K.1, Vodopyanov A. V.1
1Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, Russia
Email: veselov@ipfran.ru, alexsv@ipfran.ru, kalynov@ipfran.ru, avod@ipfran.ru
In this work, gas discharge ignited by girotron radiation with frequency 1 THz was carried out. Breakdown curves were calculated both for selfignited and initiated discharges. There was shown that in a case of breakdown by the pulse radiation with duration longer than several microseconds electric field threshold is the same as in a case of continuous wave breakdown. Also, the possibility of using a terahertz gyrotron as a radiation source for discharge in gas targets on installations for extreme ultraviolet photolithography was assessed. Keywords: girotron, terahertz breakdown, extreme ultraviolet lithography.
- X. Fu, Y. Liu, Q. Chen, Y. Fu, T.J. Cui, Front. Phys., 10 (2022). DOI: 10.3389/fphy.2022.869537
- O.A. Shevchenko, N.A. Vinokurov, V.S. Arbuzov, K.N. Chernov, I.V. Davidyuk, O.I. Deichuly, E.N. Dementyev, B.A. Dovzhenko, Ya.V. Getmanov, Ya.I. Gorbachev, B.A. Knyazev, E.I. Kolobanov, A.A. Kondakov, V.R. Kozak, E.V. Kozyrev, S.A. Krutikhin, V.V. Kubarev, G.N. Kulipanov, E.A. Kuper, I.V. Kuptsov, G.Ya. Kurkin, L.E. Medvedev, S.V. Motygin, V.K. Ovchar, V.N. Osipov, V.M. Petrov, A.M. Pilan, V.M. Popik, V.V. Repkov, T.V. Salikova, M.A. Scheglov, I.K. Sedlyarov, S.S. Serednyakov, A.N. Skrinsky, S.V. Tararyshkin, A.G. Tribendis, V.G. Tcheskidov, P.D. Vobly, V.N. Volkov, Bull. Russ. Acad. Sci. Phys., 83 (2), 228 (2019). DOI: 10.3103/S1062873819020278
- M.Yu. Glyavin, T. Idehara, S.P. Sabchevski, IEEE Trans. Terahertz Sci. Technol., 5 (5), 788 (2015). DOI: 10.1109/TTHZ.2015.2442836
- I.S. Abramov, E.D. Gospodchikov, A.G. Shalashov, Phys. Rev. Appl., 10 (3), 034065 (2018). DOI: 10.1103/PhysRevApplied.10.034065
- A. Shalashov, E. Gospodchikov, IEEE Trans. Antennas Propag., 64 (9), 3960 (2016). DOI: 10.1109/TAP.2016.2583487
- A.V. Sidorov, S.V. Golubev, S.V. Razin, A.P. Veselov, A.V. Vodopyanov, A.P. Fokin, A.G. Luchinin, M.Yu. Glyavin, J. Phys. D: Appl. Phys., 51 (46), 464002 (2018). DOI: 10.1088/1361-6463/aadb3c
- V.L. Bratman, Yu.K. Kalynov, V.N. Manuilov, Phys. Rev. Lett., 102 (24), 245101 (2009). DOI: 10.1103/PhysRevLett.102.245101
- Yu.K. Kalynov, I.V. Bandurkin, V.N. Manuilov, I.V. Osharin, A.V. Savilov, N.A. Zavolsky, in 2019 44th Int. Conf. on infrared, millimeter, and terahertz waves (IRMMW-THz), p. 1 (IEEE, 2019). DOI: 10.1109/IRMMW-THz.2019.8874254
- Yu.K. Kalynov, S.V. Razin, A.V. Sidorov, A.V. Vodopyanov, A.P. Veselov, Proc. SPIE, 11582, 115820P (2020). DOI: 10.1117/12.2580161
- Yu.P. Raizer, Gas discharge physics (Springer, Berlin-Heidelberg, 1991)
- A.I. Vyskrebentsev, Yu.P. Raizer, J. Appl. Mech. Tech. Phys., 14, 32 (1973). DOI: 10.1007/BF00850574
- G.G. Denisov, M.Yu. Shmelyov, Int. J. Infrared Millim. Waves, 12 (10), 1187 (1991). DOI: 10.1007/BF01008561
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.