Change of the loop directions on the high-frequency capacitance-voltage characteristics at a critical bias voltage, dielectric properties and memory effects in the Sr0.6Ba0.4Nb2O6/SrTiO3/Si(001) heterostructure
Pavlenko A. V.
11Federal Research Center Southern Scientific Center of the Russian Academy of Sciences, Rostov-on-Don, Russia
Email: Antvpr@mail.ru
A c-oriented barium-strontium niobate film of composition Sr0.6Ba0.4Nb2O6 (SBN60) with a thickness of 600 nm was grown by high-frequency cathode sputtering on a Si(001) substrate with a preliminarily deposited SrTiO3 (STO) sublayer. It is shown that the film belongs to the relaxor ferroelectrics. When analyzing the high-frequency capacitance-voltage characteristics of the SBN60/STO/Si(001) heterostructure at U=0-24 V, a critical electric voltage (~ 10 V) was established, in the vicinity of which a change in the C(U) loop direction was observed. It is shown that the reason of loop direction change may be due to an increase in the role of the built-in charge, which is formed at the film-substrate interface, as the amplitude U increases, simultaneously with ferroelectric polarization switching in the SBN60 film. The causes of the revealed regularities and their role in the study of memory effects in the SBN60/STO/Si(001) heterostructure are discussed. Keywords: barium-strontium niobate (SBN), metal-ferroelectric-semiconductor structures, thin films.
- V.A. Gritsenko, D.R. Islamov, Fizika dielektricheskikh plenok: mekhanizmy transporta zaryada i fizicheskie osnovy priborov pamyati (Parallel', Novosibirsk, 2017) (in Russian)
- M. Dawber, K.M. Rabe, J.F. Scott, Rev. Mod. Phys., 77, 1083 (2005). DOI: 10.1103/RevModPhys.77.1083
- T. Mikolajick, S. Slesazeck, H. Mulaosmanovic, M.H. Park, S. Fichtner, P.D. Lomenzo, M. Hoffmann, U. Schroeder, J. Appl. Phys., 129, 100901 (2021). DOI: 10.1063/5.0037617
- V. Krayzman, A. Bosak, H.Y. Playford, B. Ravel, I. Levin, Chem. Mater., 34, 9989 (2022). DOI: 10.1021/acs.chemmater.2c02367
- G.H. Olsen, U. Aschauer, N.A. Spaldin, S.M. Selbach, T. Grande, Phys. Rev. B, 93, 180101(R) (2016). DOI: 10.1103/PhysRevB.93.180101
- H. Liu, B. Dkhil, J. Alloys Compd., 929, 16731 (2022). DOI: 10.1016/j.jallcom.2022.167314
- S. Gupta, A. Kumar, V. Gupta, M. Tomar, Vacuum, 160, 434 (2019). DOI: 10.1016/j.vacuum.2018.11.057
- S. Ivanov, E.G. Kostsov, IEEE Sensors J., 20, 9011 (2020). DOI: 10.1109/JSEN.2020.2987633
- V.M. Mukhortov, Yu.I. Golovko, A.V. Pavlenko, D.V. Stryukov, S.V. Biryukov, A.P. Kovtun, S.P. Zinchenko, Phys. Solid State, 60, 1786 (2018). DOI: 10.1134/S1063783418090202
- M. Said, T.S. Velayutham, W.C. Gan, W.H.A. Majid, Ceram. Int., 41, 7119 (2015). DOI: 10.1016/j.ceramint.2015.02.023
- T. Lukasiewicz, M.A. Swirkowicz, J. Dec, W. Hofman, W. Szyrski, J. Cryst. Growth, 310, 1464 (2008). DOI: 10.1016/j.jcrysgro.2007.11.233
- J.J. Zhang, J. Sun, X.J. Zheng, Solid-State Electron., 53, 170 (2009). DOI: 10.1016/j.sse.2008.10.012
- V.A. Gurtov, Tverdotel'naya electronika (PetrGU, Petrozavodsk, 2004) (in Russian)
- A.V. Pavlenko, D.A. Kiselev, Ya.Yu. Matyash, Phys. Solid State, 63, 881 (2021). DOI: 10.1134/S1063783421060160
- D.V. Isakov, T.R. Volk, L.I. Ivleva, Phys. Solid State, 51, 2334 (2009). DOI: 10.1134/S1063783409110237
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.