Parametric amplification of quantum cascade laser radiation at 4.6 μm in a nonlinear ZnGeP2 crystal
Vyskubenko O. B.1,2, Garanin S. G.1, Zakharov N. G. 1,2, Kusakina K. V.1,3,2, Lazarenko V. I.1,2, Mukhin A. V.1, Sokolovskii G. S.4, Tulyakov K. A.1,3,2
1Federal State Unitary Enterprise "Russian Federal Nuclear Center - All-Russian Research Institute of Experimental Physics", Sarov, Nizhny Novgorod Region, Russia
2Lobachevsky University of Nizhny Novgorod, Nizhny Novgorod, Russia
3Moscow State University Branch in Sarov, Sarov, Nizhny Novgorod Region, Russia
4Ioffe Institute, St. Petersburg, Russia
Email: gs@mail.ioffe.ru
Amplification of pulsed quantum cascade laser radiation at ~ 4.6 μm through nonlinear conversion in a ZnGeP2 crystal has been demonstrated experimentally. The peak power at the output of a nonlinear crystal was 373 W at input peak power of the quantum cascade laser of 0.4 W. Keywords: Quantum cascade laser, Ho:YAG laser, parametric nonlinear conversion.
- A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, R.F. Curl, Appl. Phys. B, 90 (2), 165 (2007). DOI: 10.1007/s00340-007-2846-9
- A. Schwaighofer, M. Brandstetter, B. Lendl, Chem. Soc. Rev., 46 (19), 5903 (2017). DOI: 10.1039/c7cs00403f
- P.Q. Liu, Mid-infrared quantum cascade lasers with novel active core and laser cavity, PhD Thesis (Princeton, 2012)
- X.Pang, O. Ozolins, L. Zhang, R. Schatz, A. Udalcovs, X. Yu, S. Lourdudoss, Phys. Status Solidi A, 218 (3), 2000407 (2020). DOI: 10.1002/pjtf.202000407
- V.V. Dudelev, D.A. Mikhailov, A.V. Babichev, G.M. Savchenko, S.N. Losev, E.A. Kognovitskaya, A.V. Lyutetskii, S.O. Slipchenko, N.A. Pikhtin, A.G. Gladyshev, D.V. Denisov, I.I. Novikov, L.Ya. Karachinsky, V.I. Kuchinskii, A.Yu. Egorov, G.S. Sokolovskii, Quantum Electron., 50 (11), 989 (2020). DOI: 10.1070/QEL17396
- B. Hinkov, M. Beck, E. Gini, J. Faist, Opt. Express, 21 (16), 19180 (2013). DOI: 10.1364/oe.21.019180
- M. Bertrand, A. Shlykov, M. Shahmohamadi, M. Beck, S. Willitsch, J. Faist, Photonics, 9 (8), 589 (2022). DOI: 10.3390/photonics9080589
- F.-L. Yan, J.-C. Zhang, Z.-Z. Jia, N. Zhuo, S.-Q. Zhai, S.-M. Liu, F.-Q. Liu, Z.-G. Wang, AIP Adv., 6 (3), 035022 (2016). DOI: 10.1063/1.4945383
- W. Zhou, D. Wu, Q.Y. Lu, S. Slivken, M. Razeghi, Sci. Rep., 8, 14866 (2018). DOI: 10.1038/s41598-018-33024-7
- G. Bloom, A. Grisard, E. Lallier, C. Larat, M. Carras, X. Marcadet, Opt. Lett., 35 (4), 505 (2010). DOI: 10.1364/ol.35.000505
- Q. Clement, J.-M. Melkonian, J. Barrientos-Barria, J.-B. Dherbecourt, M. Raybaut, A. Godard, Opt. Lett., 38 (20), 4046 (2013). DOI: 10.1364/ol.38.004046
- F. Gutty, A. Grisard, C. Larat, D. Papillon, M. Schwarz, B. Gerard, R. Ostendorf, J. Wagner, E. Lallier, Adv. Opt. Technol., 6 (2), 95 (2017). DOI: 10.1515/aot-2016-0062
- http://www.asphotonics.com/SNLO
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.