Greenish white emission of ZnO microwalls fabricated by a hot target magnetron sputtering method
Tarasov A. P.
1, Ismailov A. M.
2, Muslimov A. E.
11Shubnikov Institute of Crystallography “Crystallography and Photonics”, Russian Academy of Sciences, Moscow, Russia
2Dagestan State University, Makhachkala, Dagestan Republic, Russia
Email: tarasov.a@crys.ras.ru
The processes of formation of two-dimensional ZnO microstructures were studied for the first time using the hot magnetron sputtering regime. The fabricated microstructures had a morphology of multilayer walls 1-2 μm thick and were characterized by the presence of pores up to 10 μm in size. The UV-vis and photoluminescence spectroscopy methods revealed a significant modification of the optical properties of structures as a result of heat treatment. In particular, postgrowth annealing resulted in a significant enhancement of the narrow UV near-band-edge emission band, as well as the appearance of strong visible luminescence. A sufficiently long wavelength position (~ 545 nm) and a large width (FWHM ~ 140 nm) of the visible luminescence band cause the visually observed bright greenish white emission. Keywords: zinc oxide, hot target, magnetron sputtering, 2D structures, microwalls, white luminescence, white light source.
- E.-M. Bourim, J.I. Han, Electron. Mater. Lett., 11 (6), 982 (2015). DOI: 10.1007/s13391-015-5180-0
- I.-W. Cho, B. Lee, M.-Y. Ryu, K. Lee, J.S. Kim, J. Korean Phys. Soc., 78 (4), 275 (2021). DOI: 10.1007/s40042-020-00041-7
- A.C. Berends, M.A. van de Haar, M.R. Krames, Chem. Rev., 120 (24), 13461 (2020). DOI: 10.1021/acs.chemrev.0c00618
- L. Han, Y. Sun, J. Sun, J. Rare Earths, 34 (1), 12 (2016). DOI: 10.1016/s1002-0721(14)60571-8
- G.M. Farinola, R. Ragni, Chem. Soc. Rev., 40 (7), 3467 (2011). DOI: 10.1039/c0cs00204f
- W.-Y. Wong, C.-L. Ho, J. Mater. Chem., 19 (26), 4457 (2009). DOI: 10.1039/b819943d
- S. Mukherjee, P. Thilagar, Dyes Pigm., 110, 2 (2014). DOI: 10.1016/j.dyepig.2014.05.031
- J. Rodrigues, N.B. Sedrine, M.R. Correia, T. Monteiro, Mater. Today Chem., 16, 100243 (2020). DOI: 10.1016/j.mtchem.2020.100243
- A. Galdamez-Martinez, G. Santana, F. Guell, P.R. Marti nez-Alanis, A. Dutt, Nanomaterials, 10 (5), 857 (2020). DOI: 10.3390/nano10050857
- A.M. Ismailov, V.A. Nikitenko, M.R. Rabadanov, L.L. Emiraslanova, I.S. Aliev, M.K. Rabadanov, Vacuum, 168, 108854 (2019). DOI: 10.1016/j.vacuum.2019.108854
- S.-W. Kim, H.-K. Park, M.-S. Yi, N.-M. Park, J.-H. Park, S.-H. Kim, S.-L. Maeng, C.-J. Choi, S.-E. Moon, Appl. Phys. Lett., 90 (3), 033107 (2007). DOI: 10.1063/1.2430918
- C. Li, L. Yu, X. Fan, M. Yin, N. Nan, L. Cui, S. Ma, Y. Li, B. Zhang, RSC Adv., 10 (6), 3319 (2020). DOI: 10.1039/c9ra07933e
- A. Pan, R. Yu, S. Xie, Z. Zhang, C. Jin, J. Cryst. Growth, 282 (1), 165 (2005). DOI: 10.1016/j.jcrysgro.2005.05.003
- M.M. Brewster, M.Y. Lu, S.K. Lim, M.J. Smith, X. Zhou, S. Gradecak, J. Phys. Chem. Lett., 2 (15), 1940 (2011). DOI: 10.1021/jz2008775
- A.P. Tarasov, L.A. Zadorozhnaya, B.V. Nabatov, I.S. Volchkov, V.M. Kanevsky, Cryst. Rep., 68 (2), 293 (2023). DOI: 10.1134/S1063774523020190
- L. Miao, S. Tanemura, H.Y. Yang, S.P. Lau, Int. J. Nanotechnol., 6 (7-8), 723 (2009). DOI: 10.1504/IJNT.2009.02531
- A.P. Tarasov, C.M. Briskina, V.M. Markushev, L.A. Zadorozhnaya, I.S. Volchkov, Opt. Mater., 102, 109823 (2020). DOI: 10.1016/j.optmat.2020.109823
- A.P. Tarasov, A.S. Lavrikov, L.A. Zadorozhnaya, V.M. Kanevsky, JETP Lett., 115 (9), 502 (2022). DOI: 10.1134/S0021364022100514
- A.P. Tarasov, A.E. Muslimov, V.M. Kanevsky, Materials, 15 (24), 8723 (2022). DOI: 10.3390/ma15248723
- L.A. Zadorozhnaya, A.P. Tarasov, I.S. Volchkov, A.E. Muslimov, V.M. Kanevsky, Materials, 15 (22), 8165 (2022). DOI: 10.3390/ma15228165
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.