Multiscale structuring of CdSe/CdS/ZnS quantum dots in spin-coated and Langmuir films
A. P. Kuz’menko1, Novikov E.A.1, M. A Pugachevskii1, V.V. Rodionov1, V.G. Zavodinsky1, O. A. Gorkusha2, A.V. Syuy3, D.P. Anikin 4, S.V. Dezhurov 5
1Southwest State University, Kursk, Russia
2Institute of Applied Mathemativs, Khabarovsk Department, Russian Academy of Sciences, Khabarovsk, Russia
3Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Moscow Region, Russia
4 LLC "Rusid", Armavir, Russia
5Scientific and Technological testing center ”Nanotech-Dubna", Dubna, Moscow Region, Russia
Email: apk3527@mail.ru

PDF
A comparative analysis of the features of multiscale structuring of Langmuir and spin-coated films from stabilized TOPO (trioctylphosphine oxide) quantum dots CdSe/CdS/ZnS was carried out using optical, probe and electron microscopy methods, including high-resolution microscopy and elemental energy-dispersive analysis. The chemical structure was studied by Raman scattering, IR Fourier spectroscopy, and X-ray diffractometry. It was shown that Langmuir nanofilms built on the phenomena of self-organization are characterized by higher continuity and homogeneity, while in spin-coated films they form clusters with sizes ranging from tens to hundreds of nanometers. Calculations ab initio were performed using the electron density functional method for CdnSen nuclei, which indicated the dominance of hexagonal close packing. Key words: micro- and nanostructuring, Langmuir-Blodgett films, spin-coated films, quantum dots, clustering.
  1. C.J. Murphy, J.L. Coffer. Appl. Spectrosc., 56, 16A (2002)
  2. H. Kudilatt, B. Hou, M.E. Welland. Part. \& Part. Syst. Charact., 37, 2000192 (2020). DOI: 10.1002/ppsc.202000192
  3. K. Khan, A.K. Tareen, M. Aslam, R. Wang, Y. Zhang, A. Mahmood, Z. Ouyang, H. Zhang, Z. Guo. J. Mater. Chem, 8, 387 (2020). DOI: 10.1039/C9TC04187G
  4. R. Ma, Z. Tian, Y. Hu, Y. Huang, J. Lu. Langmuir, 34, 11354 (2018). DOI: 10.1021/acs.langmuir.8b02232
  5. K.-P. Chang, Y.-C. Yeh, C.-J. Wu, C.-C. Yen, D.-S. Wuu. Nanomaterials, 12, 909 (2022). DOI: 10.3390/nano12060909
  6. S.A. Sergeev, M.V. Gavrikov, N.D. Zhukov. Pis'ma v ZhTF, 48, 32 (in Russian). (2022). DOI: 10.21883/PJTF.2022.09.52448.19115
  7. E. Petryayeva, W.R. Algar, I.L. Medintz. Appl. Spectrosc., 67, 215 (2013). DOI: 10.1366/12-06948
  8. L.V. Andreeva, A.V. Koshkin, P.V. Lebedev-Stepanov, A.N. Petrov, M.V. Alfimov. Coll. Surf., A: Physicochem., Eng. Aspects, 300, 300 (2007). DOI: 10.1016/j.colsurfa.2007.02.001
  9. B. Marti n-Garci a, M.M. Velazquez. Langmuir, 30, 509 (2014). DOI: 10.1021/la404834b
  10. A.P. Kuzmenko, E.A. Novikov, V.V. Rodionov, A.V. Kuzko, D.P. Anikin, D.V. Krylsky. Izvestiya YuZGU.. Seriya: Tekhnika i tekhnologii, 2, 86 (2021). (in Russian)
  11. A.G. Vitukhnovsky, A.A. Vashchenko, D.N. Bychkovsky, D.N. Dirin, P.N. Tananaev, M.S. Vakshtein, D.A. Korzhonov. FTP, 47, 1591 (2013). (in Russian)
  12. J. Xu, X. Ji, K.M. Gattas-Asfura, C. Wang, R.M. Leblanc, Coll. Surf., A: Physicochem., Eng. Aspects, 284, 35 (2006). DOI: 10.1016/j.colsurfa.2005.11.046
  13. M.V. Kelso, N.K. Mahenderkar, Q. Chen, J.Z. Tubbesing, J.A. Switzer. Science, 364, 6436 (2019). DOI: 10.1126/science.aaw6184
  14. A.P. Kuzmenko, E.A. Novikov, M.A. Pugachevsky, V.M. Emelyanov, O.I. Shutyaeva. Izvestiya YuZGU.. Seriya: Tekhnika i tekhnologii, 3, 88 (2019). (in Russian)
  15. K.A. Svit, K.S. Zhuravlev. Semiconductors, 53, 1540 (2019). DOI: 0.1134/S1063782619110198
  16. P. Alexandridis, U. Olsson, B. Lindman. Langmuir, 14, 2627 (1998). DOI: 10.1021/la971117c
  17. A.P. Kuzmenko, Ch.N. Aung, V.V. Rodionov. ZhTF, 6, 118 (2015) (in Russian)
  18. A.P. Kuz'menko, T.P. Naing, A.E. Kuz'ko, M.M. Tan. Tech. Phys., 65 (2), 254 (2020). DOI: 10.1134/S1063784220020127
  19. P. Adel, A. Wolf, T. Kodanek, D. Dorfs. Chem. Mater., 26, 3121 (2014). DOI: 10.1021/cm500431m
  20. J. van Embden, J. Jasieniak, P. Mulvaney. ASC, 131, 14299 (2009). DOI: 10.1021/ja9030209
  21. Powder Diffraction File, Joint Committee on Powder Diffraction Standards, ASTM, Philadelphia, PA, 1967, Card 2-549, Card 19-191
  22. L.B. Hai, N.X. Nghia, P.T. Nga, V.D. Chinh, N.T.T. Trang, V.T.H. Hanh. J. Exp. Nano., 4, 277 (2009). DOI: 10.1080/17458080802178619
  23. R. Liu, Y. Geng, Z. Tian, N. Wang, M. Wang, G. Zhang, Y. Yang. Hydrometallurgy, 199, 105521 (2021). DOI: 10.1016/j.hydromet.2020.105521
  24. T. Prabhua, S. Periandy, S. Ramalingama. Spectrochim. Acta Part A, 79, 948 (2011). DOI: 10.1016/j.saa.2011.04.001
  25. X. Wang, W. Li, K. Sun. J. Mater. Chem., 21 (24), 8558 (2011). DOI: 10.1039/c1jm00061f
  26. R.K. Ratnesh, M.S. Mehata. Opt. Mater., 64, 250 (2017). DOI: 10.1016/j.optmat.2016.11.043
  27. D.K. Guptaa, M. Verma, K.B. Sharma, N.S. Saxena. Indian J. Pure \& App. Phys., 55, 113 (2017). DOI: 10.56042/ijpap.v55i2.14671
  28. M.V. Dzhagan, M.Ya. Valakh, A.G. Milekhin, N.A. Yeryukov, R.T.D. Zahn, E. Cassette, Th. Pons, B. Dubertret. J. Phys. Chem. C, 117, 18225 (2013). DOI: 10.1021/jp4046808
  29. W. Kohn, J.L. Sham. Phys. Rev., 140, A1133 (1965)
  30. M. Beckstedte, A. Kley, J. Neugebauer, M. Scheffler. Comp. Phys. Comm., 107, 187 (1997)
  31. M. Fuchs, M. Scheffler, Comp. Phys. Comm., 119, 67 (1999). DOI: 10.1016/S0010-4655(98)00201-X
  32. S. Neeleshwar, C.L. Chen, C.B. Tsai, Y.Y. Chen, C.C. Chen, S.G. Shyu, M.S. Seehra. Phys. Rev. B: Condens. Matter Mater. Phys., 71, 201307 (2005). DOI: 10.1103/PhysRevB.71.201307

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru