Multiscale structuring of CdSe/CdS/ZnS quantum dots in spin-coated and Langmuir films
A. P. Kuz’menko1, Novikov E.A.1, M. A Pugachevskii1, V.V. Rodionov1, V.G. Zavodinsky1, O. A. Gorkusha2, A.V. Syuy3, D.P. Anikin 4, S.V. Dezhurov 5
1Southwest State University, Kursk, Russia
2Institute of Applied Mathemativs, Khabarovsk Department, Russian Academy of Sciences, Khabarovsk, Russia
3Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Moscow Region, Russia
4 LLC "Rusid", Armavir, Russia
5Scientific and Technological testing center ”Nanotech-Dubna", Dubna, Moscow Region, Russia
Email: apk3527@mail.ru
A comparative analysis of the features of multiscale structuring of Langmuir and spin-coated films from stabilized TOPO (trioctylphosphine oxide) quantum dots CdSe/CdS/ZnS was carried out using optical, probe and electron microscopy methods, including high-resolution microscopy and elemental energy-dispersive analysis. The chemical structure was studied by Raman scattering, IR Fourier spectroscopy, and X-ray diffractometry. It was shown that Langmuir nanofilms built on the phenomena of self-organization are characterized by higher continuity and homogeneity, while in spin-coated films they form clusters with sizes ranging from tens to hundreds of nanometers. Calculations ab initio were performed using the electron density functional method for CdnSen nuclei, which indicated the dominance of hexagonal close packing. Key words: micro- and nanostructuring, Langmuir-Blodgett films, spin-coated films, quantum dots, clustering.
- C.J. Murphy, J.L. Coffer. Appl. Spectrosc., 56, 16A (2002)
- H. Kudilatt, B. Hou, M.E. Welland. Part. \& Part. Syst. Charact., 37, 2000192 (2020). DOI: 10.1002/ppsc.202000192
- K. Khan, A.K. Tareen, M. Aslam, R. Wang, Y. Zhang, A. Mahmood, Z. Ouyang, H. Zhang, Z. Guo. J. Mater. Chem, 8, 387 (2020). DOI: 10.1039/C9TC04187G
- R. Ma, Z. Tian, Y. Hu, Y. Huang, J. Lu. Langmuir, 34, 11354 (2018). DOI: 10.1021/acs.langmuir.8b02232
- K.-P. Chang, Y.-C. Yeh, C.-J. Wu, C.-C. Yen, D.-S. Wuu. Nanomaterials, 12, 909 (2022). DOI: 10.3390/nano12060909
- S.A. Sergeev, M.V. Gavrikov, N.D. Zhukov. Pis'ma v ZhTF, 48, 32 (in Russian). (2022). DOI: 10.21883/PJTF.2022.09.52448.19115
- E. Petryayeva, W.R. Algar, I.L. Medintz. Appl. Spectrosc., 67, 215 (2013). DOI: 10.1366/12-06948
- L.V. Andreeva, A.V. Koshkin, P.V. Lebedev-Stepanov, A.N. Petrov, M.V. Alfimov. Coll. Surf., A: Physicochem., Eng. Aspects, 300, 300 (2007). DOI: 10.1016/j.colsurfa.2007.02.001
- B. Marti n-Garci a, M.M. Velazquez. Langmuir, 30, 509 (2014). DOI: 10.1021/la404834b
- A.P. Kuzmenko, E.A. Novikov, V.V. Rodionov, A.V. Kuzko, D.P. Anikin, D.V. Krylsky. Izvestiya YuZGU.. Seriya: Tekhnika i tekhnologii, 2, 86 (2021). (in Russian)
- A.G. Vitukhnovsky, A.A. Vashchenko, D.N. Bychkovsky, D.N. Dirin, P.N. Tananaev, M.S. Vakshtein, D.A. Korzhonov. FTP, 47, 1591 (2013). (in Russian)
- J. Xu, X. Ji, K.M. Gattas-Asfura, C. Wang, R.M. Leblanc, Coll. Surf., A: Physicochem., Eng. Aspects, 284, 35 (2006). DOI: 10.1016/j.colsurfa.2005.11.046
- M.V. Kelso, N.K. Mahenderkar, Q. Chen, J.Z. Tubbesing, J.A. Switzer. Science, 364, 6436 (2019). DOI: 10.1126/science.aaw6184
- A.P. Kuzmenko, E.A. Novikov, M.A. Pugachevsky, V.M. Emelyanov, O.I. Shutyaeva. Izvestiya YuZGU.. Seriya: Tekhnika i tekhnologii, 3, 88 (2019). (in Russian)
- K.A. Svit, K.S. Zhuravlev. Semiconductors, 53, 1540 (2019). DOI: 0.1134/S1063782619110198
- P. Alexandridis, U. Olsson, B. Lindman. Langmuir, 14, 2627 (1998). DOI: 10.1021/la971117c
- A.P. Kuzmenko, Ch.N. Aung, V.V. Rodionov. ZhTF, 6, 118 (2015) (in Russian)
- A.P. Kuz'menko, T.P. Naing, A.E. Kuz'ko, M.M. Tan. Tech. Phys., 65 (2), 254 (2020). DOI: 10.1134/S1063784220020127
- P. Adel, A. Wolf, T. Kodanek, D. Dorfs. Chem. Mater., 26, 3121 (2014). DOI: 10.1021/cm500431m
- J. van Embden, J. Jasieniak, P. Mulvaney. ASC, 131, 14299 (2009). DOI: 10.1021/ja9030209
- Powder Diffraction File, Joint Committee on Powder Diffraction Standards, ASTM, Philadelphia, PA, 1967, Card 2-549, Card 19-191
- L.B. Hai, N.X. Nghia, P.T. Nga, V.D. Chinh, N.T.T. Trang, V.T.H. Hanh. J. Exp. Nano., 4, 277 (2009). DOI: 10.1080/17458080802178619
- R. Liu, Y. Geng, Z. Tian, N. Wang, M. Wang, G. Zhang, Y. Yang. Hydrometallurgy, 199, 105521 (2021). DOI: 10.1016/j.hydromet.2020.105521
- T. Prabhua, S. Periandy, S. Ramalingama. Spectrochim. Acta Part A, 79, 948 (2011). DOI: 10.1016/j.saa.2011.04.001
- X. Wang, W. Li, K. Sun. J. Mater. Chem., 21 (24), 8558 (2011). DOI: 10.1039/c1jm00061f
- R.K. Ratnesh, M.S. Mehata. Opt. Mater., 64, 250 (2017). DOI: 10.1016/j.optmat.2016.11.043
- D.K. Guptaa, M. Verma, K.B. Sharma, N.S. Saxena. Indian J. Pure \& App. Phys., 55, 113 (2017). DOI: 10.56042/ijpap.v55i2.14671
- M.V. Dzhagan, M.Ya. Valakh, A.G. Milekhin, N.A. Yeryukov, R.T.D. Zahn, E. Cassette, Th. Pons, B. Dubertret. J. Phys. Chem. C, 117, 18225 (2013). DOI: 10.1021/jp4046808
- W. Kohn, J.L. Sham. Phys. Rev., 140, A1133 (1965)
- M. Beckstedte, A. Kley, J. Neugebauer, M. Scheffler. Comp. Phys. Comm., 107, 187 (1997)
- M. Fuchs, M. Scheffler, Comp. Phys. Comm., 119, 67 (1999). DOI: 10.1016/S0010-4655(98)00201-X
- S. Neeleshwar, C.L. Chen, C.B. Tsai, Y.Y. Chen, C.C. Chen, S.G. Shyu, M.S. Seehra. Phys. Rev. B: Condens. Matter Mater. Phys., 71, 201307 (2005). DOI: 10.1103/PhysRevB.71.201307
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.