Investigation of the filament properties in the HfO2-based structures using conductive atomic force microscopy
Isaev A. G. 1,2, Permiakova O. O.1,2, Rogozhin A. Е1
1Valiev Institute of Physics and Technology of RAS, Moscow, Russia
2Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, Dolgoprudnyi, Russia
Email: isaev.ag@phystech.edu, o.permyakova@phystech.edu

PDF
The results of the research on the resistive switching in Pt/HfO2/HfOxNy/TiN, Pt/HfO2/TaOxNy/TiN and Pt/Al2O3/HfO2/TaOxNy/TiN structures are presented. Active layers of the structures were deposited by atomic layer deposition. The formation of conductive filaments in all three structures was demonstrated using conductive atomic force microscopy. A full cycle of resistive switching with a microscope probe in these structures was also demonstrated. The properties of filaments formed at different voltages were studied, and the distributions of the filament density by conductivity and size were presented. The characteristics of the studied structures were compared. It appears that the Pt/Al2O3/HfO2/TaOxNy/TiN structure has the greatest potential for resistive random-access memory application. Keywords: memristor, resistive switching, resistive random-access memory, conductive atomic force microscopy.
  1. F. Pan, S. Gao, C. Chen, C. Song, F. Zeng. Mater. Sci. Engineer.: R: Reports, 83, 1 (2014). DOI: 10.1016/j.mser.2014.06.002
  2. B. Govoreanu, G. Kar, Y.Y. Chen. In Proc. IEDM IEEE Intern., Washington, DC, USA (2011), p. 31.6.1. DOI: 10.1109/IEDM.2011.6131652
  3. S. Pi, C. Li, H. Jiang, W, Xia, H. Xin, J. Yang. Nature Nanotechnology, 14, 35 (2019). DOI: 10.1038/s41565-018-0302-0
  4. A.C. Torrezan, J.P. Strachan, G. Medeiros-Ribeiro. Nanotechnology, 22, 485203 (2011). DOI: 10.1088/0957-4484/22/48/485203
  5. M.-J. Lee, C.B. Lee, D. Lee, S.R. Lee, M. Chang, J.H. Hur. Nature Mater., 10, 625 (2011). DOI: 10.1038/nmat3070
  6. T. Liu, T.H. Yan, R. Scheuerlein. In Proc. IEEE J. Solid-State Circuits, 49, 140 (2014). DOI: 10.1109/JSSC.2013.2280296
  7. R. Fackenthal, M. Kitagawa, W. Otsuka, K. Prall, D. Mills, K. Tsutsui. In Proc. IEEE ISSCC (San Francisco, USA, 2014). p. 338. DOI: 10.1109/ISSCC.2014.6757460
  8. M. Lanza, H.-S.P. Wong, E. Pop, D. Ielmini, D.I. Strukov, B.C. Regan. Adv. Electron. Mater., 5, 1800143 (2019). DOI: 10.1002/aelm.201800143
  9. H.Y. Lee, Y.S. Chen, P.S. Chen. In Proc. IEEE IEDM (San Francisco, USA, 2010), p. 19.7.1. DOI: 10.1109/IEDM.2010,5703395
  10. S. Koveshnikov, K. Matthews, K. Min, D. C. Gilmer, M.G. Sung, S. Deora. In Proc. IEEE IEDM (San Francisco, USA, 2012), p. 20.4.1. DOI: 10.1109/IEDM.2012.6479080
  11. A.V. Fadeev, K.V. Rudenko. Russ. Microelectron., 50, 311 (2021). DOI: 10.1134/S1063739721050024
  12. M.R. Park, Y. Abbas, H. Abbas. Q. Hu, T.S. Lee, Y.J. Choi. Microelectron. Engineer., 159, 190 (2016). DOI: 10.1016/j.mee.2016.03.043
  13. S. Biswas, A. Paul, P. Das P. Tiwary, H.J. Edwards, V.R. Dhanak. In Proc. IEEE Trans. Electron Devices, 68, 3787(2021). DOI: 10.1109/TED.2021.3084554
  14. K.-M. Persson, S. Mamidala, L.-E. Wernersson. In Proc. IEEE J. Electron Devices Soc., 9, 564 (2021). DOI: 10.1109/JEDS.2021.3079398
  15. Y.M. Chesnokov, A.V. Miakonkikh, A.E. Rogozhin, K.V. Rudenko, A.L. Vasiliev. J. Mater. Sci., 53, 7214 (2018). DOI: 10.1007/s10853-018-2099-5
  16. C. Liu, C. Zhang, Y. Cao. J. Mater. Chem. C, 8, 12478 (2020). DOI: 10.1039/D0TC02494E
  17. U. Celano (editor). Electrical Atomic Force Microscopy for Nanoelectronics (Springer International Publishing, 2019), DOI: 10.1007/978-3-030-15612-1
  18. S. Dirkmann, J. Kaiser, C. Wenger, T. Mussenbrock, ACS Appl. Mater. Interfac., 10 (17), 14857 (2018). DOI: 10.1021/acsami.7b19836
  19. S. Sharath, S. Vogel, L. Molina-Luna, E. Hildebrandt, C. Wenger, J. Kurian. Adv. Functional Mater., 27 (32), 1700432 (2017). DOI: 10.1002/adfm.201700432
  20. M.J. Lee, C. Lee, D. Lee, S. Lee, M. Chang, J. Hur. Nature Mater., 10 (8), 625 (2011). DOI: 10.1038/nmat3070
  21. H. Jiang, L. Han, P. Lin, Z. Wang, M.H. Jang, Q. Wu. Scientific Reports, 6 (1), 28525 (2016). DOI: 10.1038/srep28525
  22. F. Kurnia, C. Liu, C.U. Jung, B.W. Lee. Appl. Phys. Lett., 102 (15), 152902 (2013). DOI: 10.1063/1.4802263
  23. J.H. Yoon, J. Zhang, P. Lin, N. Upadhyay, P. Yan. Adv. Mater., 32 (9), 1904599 (2020). DOI: 10.1002/adma.201904599
  24. A. Sawa. Mater. Today, 11 (6), 28 (2008). DOI: 10.1016/S1369-7021(08)70119-6
  25. D.-H. Kwon, K.M. Kim, J.H. Jang, J.M. Jeon, M.H. Lee, G.H. Kim. Nature Nanotechnology, 5 (2), 148 (2010). DOI: 10.1038/nnano.2009.456

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru