Particles combustion of interaction of a microwave pulse of a gyrotron with a mixture of metal/dielectric powders
Zakletskii Z.A.1, Gusein-zade N.G. 1, Malakhov D.V.1, Badyanova L.V.1, Voronova E.V.1, Stepakhin V.D. 1
1Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
Email: fiveziggen@gmail.com
As a result of interaction under normal conditions in an air atmosphere of a microwave pulse of a gyrotron with a mixture of Al/Al2O3 powders, ceramic particles of morphology microprocesses are synthesized. A variant of a multi-stage process for the development of physical and chemical processes in a reactor, taking into account ignition. After the end of the microwave pulse, a cloud is observed consisting of hot aluminum oxide particles and burning aluminum particles. A certain influence of the combustion process of aluminum particles on the products of plasma-chemical synthesis. The paper also determines the average velocity of particles from the powder mixture, the burning time of aluminum particles, the surface temperature of the particles of the powder mixture, and the temperature of the gaseous medium in the upper part of the plasma-chemical reactor. Keywords: Plasma, combustion particles and flame, microwave, materials.
- J.P. Yasno, R.F.K. Gunnewiek, R.H.G.A. Kiminami. Adv. Powder Technol., 30 (7), 1348 (2019). DOI: 10.1016/j.apt.2019.04.010
- A. Goldstein, A. Goldenberg, Y. Yeshurun, M. Hefetz. J. Am. Ceram. Soc., 91 (12), 4141 (2008). DOI: 10.1111/j.1551-2916.2008.02788.x
- J.H. Kim, J.K. Kim, Y.C. Kang. Appl. Surf. Sci., 523, 146470 (2020). DOI: 10.1016/j.apsusc.2020.146470
- Y. Hu, H. Ding, C. Li. Particuology, 9 (5), 528 (2011). DOI: 10.1016/j.partic.2011.06.003
- A.B. Haugen, I. Kumakiri, C. Simon, M-A. Einarsrud. J. Europ. Ceramic Society, 31 (3), 291 (2011). DOI: 10.1016/j.jeurceramsoc.2010.10.006
- N.S. Akhmadullina, N.N. Skvortsova, V.D. Stepakhin, E.M. Konchekov, A.A. Letunov, Y.F. Kargin, A.A. Konovalov, O.N. Shishilov. J. Phys.: Conf. Ser., 1347 (1), 012089 (2019). DOI: 10.1088/1742-6596/1347/1/012089
- G.M. Batanov, N.K. Berezhetskaya, V.D. Borzosekov, L.D. Iskhakova, L.V. Kolik, E.M. Konchekov, A.A. Letunov, D.V. Malakhov, F.O. Milovich, E.A. Obraztsova, E.D. Obraztsova, A.E. Petrov, K.A. Sarksyan, N.N. Skvortsova, V.D. Stepakhin, N.K. Kharchev. Plasma Phys. Rep., 39, 843 (2013). DOI: 10.1134/S1063780X13100024
- G.M. Batanov, N.K. Berezhetskaya, I.A. Kossyi, A.N. Magunov, V.P. Silakov. Eur. Phys. J. Appl. Phys., 26 (1), 11 (2004). DOI: 10.1051/epjap:2004016
- M.W. Beckstead. Fizika Goreniya i Vzryva, 41 (5), 55 (2005). DOI: 10.1007/s10573-005-0067-2 [in Russian]
- A.N. Magunov. Nauchnoe Priborostroenie, 20 (3), 22 (2010). [in Russian]
- E.V. Voronova, A.V. Knyazev, A.A. Letunov, V.P. Logvinenko, N.N Skvortsova, V.D. Stepakhin. Phys. Atom. Nucl., 84 (10), 1761 (2021). DOI: 10.1134/S1063778821090374
- S. Acquaviva, Spectrochim. Acta Part A: Molecular and Biomolecular Spectroscopy, 60 (8-9), 2079 (2004). https://doi.org/10.1016/j.saa.2003.10.040
- X. Bai ,V. Motto-Ros, W. Lei, L. Zheng, J. Yu, Spectrochim. Acta Part B: Atomic Spectroscopy, 99, 193 (2014). DOI: 10.1016/j.sab.2014.07.004
- P. Puri, V. Yang. J. Phys. Chem. C., 111 (32), 11776 (2007). DOI: 10.1021/jp0724774
- G.A. Askaryan, G.M. Batanov, I.A. Kossyy. Pisma v ZhTF, 15 (8), 18 (1989) (in Russian)
- G.A. Askarian, G.M. Batanov, N.K. Berezhetskaya, S.I. Gritsinin, I.A. Kossyy, I.M. Raevsky. Pisma v ZhETF 29 (706), (1979). (in Russian)
- M.J. Assael, K. Kakosimos, R.M. Banish, J. Brillo, I. Egry, R. Brooks, P.N. Quested, K.C. Mills, A. Nagashima, Y. Sato, W.A. Wakeham. J. Phys. Chem. Ref. Data, 35, 285 (2006). DOI: 10.1063/1.2149380
- Z. Dai, G.M. Faeth. Intern. J. Multiphase Flow, 27, 217 (2001). DOI: 10.1016/S0301-9322(00)00015-X
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.