Formation of beam plasma in nitrogen atmosphere by a pulsed electron beam near a dielectric target in the forevacuum pressure range
Kazakov A. V. 1, Oks E. M. 1,2, Panchenko N. A. 1
1Tomsk State University of Control Systems and Radioelectronics, Tomsk, Russia
2Institute of High Current Electronics, Siberian Branch, Russian Academy of Sciences, Tomsk, Russia
Email: andrykazakov@gmail.com, oks@fet.tusur.ru, PanchenkoNA@vtomske.ru

PDF
Features of the processes of beam plasma formation near a dielectric (aluminum oxide ceramic) target being irradiated by an intense pulsed electron beam in the forevacuum pressure range (4-15 Pa) have been investigated. It has been established that the density of the beam plasma near the irradiated dielectric target is higher than in the case of "free" propagation of the electron beam. The observed increase in plasma density depends on the emission current (electron beam current), gas pressure, and accelerating voltage. The influence of the dielectric target on the beam plasma density is due to emission of electrons from the target surface and the uncompensated negative potential on the target surface, which determines the energy of emitted electrons. An increase in gas pressure leads to a smaller increase in the beam plasma density due to a decrease in the absolute value of the negative potential. Varying the electron beam current and accelerating voltage provide to control the beam plasma density. Keywords: beam plasma, pulsed electron beam, forevacuum pressure range, plasma-cathode electron source.
  1. P.K. Chu, X.P. Lu. Low Temperature Plasma Technology: Methods and Applications (CRC Press, Boca Raton, 2013)
  2. E.B. Hooper Jr, O.A. Anderson, P.A. Willmann. Phys. Fluids, 22 (12), 2334 (1979). DOI: 10.1063/1.862545
  3. K.S. Klopovsky, A.V. Mukhovatova, A.M. Popov, N.A. Popov, O.B. Popovicheva, T.V. Rakhimova. J. Phys. D: Appl. Phys., 27 (7), 1399 (1994). DOI: 10.1088/0022-3727/27/7/010
  4. S.G. Walton, C. Muratore, D. Leonhardt, R.F. Fernsler, D.D. Blackwell, R.A. Meger. Surf. Coatings Technol., 186 (1-2), 40 (2004). DOI: 10.1016/j.surfcoat.2004.04.007
  5. E.H. Lock, R.F. Fernsler, S.G. Walton. Plasma Sources Sci. Technol., 17 (2), 025009 (2008). DOI: 10.1088/0963-0252/17/2/025009
  6. E.H. Lock, R.F. Fernsler, S.P. Slinker, I.L. Singer, S.G. Walton. J. Phys. D: Appl. Phys., 47, 425206 (2014). DOI: 10.1088/0022-3727/47/42/425206
  7. J.A. Aguilera, C. Aragon. Spectrochim. Acta Part B: Atomic Spectroscopy, 59 (12), 1861 (2004). DOI: 10.1016/j.sab.2004.08.003
  8. L.J. Radziemski. Lasers-Induced Plasmas and Applications (CRC Press, Boca Raton, 2020)
  9. T. Vasilieva, S. Lopatin, V. Varlamov, V. Miasnikov, A.M. Hein, M. Vasiliev. Pure Appl. Chem., 88 (9), 873 (2016). DOI: 10.1515/pac-2016-0603
  10. T.M. Vasilieva, I.K. Naumova, O.V. Galkina, E.V. Udoratina, L.A. Kuvschinova, M.N. Vasiliev, Khin Maung Htay, Htet Ko Ko Zaw. IEEE Transactions on Plasma Sci., 48 (4), 1035 (2020). DOI: 10.1109/TPS.2020.2980200
  11. A.S. Klimov, I.Yu. Bakeev, E.M. Oks, V.T. Tran, A.A. Zenin. Vacuum, 196, 110722 (2022). DOI: 10.1016/j.vacuum.2021.110722
  12. D. Leonhardt, C. Muratore, S.G. Walton, D.D. Blackwell, R.F. Fernsler, R.A. Meger. Surf. Coatings Technol., 177, 682 (2004). DOI: 10.1016/j.surfcoat.2003.08.007
  13. S.G. Walton, D.R. Boris, S.C. Hernandez, E.H. Lock, T.B. Petrova, G.M. Petrov, E.A. Joseph. Microelectron. Engineer., 168, 89 (2017). DOI: 10.1016/j.mee.2016.11.003
  14. N.V. Gavrilov, A.I. Men'shakov. Tech. Phys., 57 (3), 399 (2012). DOI: 10.1134/S1063784212030073
  15. T. Vasilieva, I. Sokolov, A. Sigarev, A. Tun Win. Open Chem., 13 (1), 204 (2015). DOI: 10.1515/chem-2015-0015
  16. S. Ghosh, D.R. Boris, S.C. Hernandez, C.A. Zorman, S.G. Walton, R.M. Sankaran. Plasma Processes and Polymers, 14 (12), 1700079 (2017). DOI: 10.1002/ppap.201700079
  17. V.O. Konstantinov, V.G. Shchukin, R.G. Sharafutdinov, V.M. Karsten, G.G. Gartvich, O.I. Semenova. Plasma Phys. Reports, 36, 1278 (2010). DOI: 10.1134/S1063780X10130313
  18. R.G. Sharafutdinov, V.O. Konstantinov, V.I. Fedoseev, V.G. Shchukin. Plasma Phys. Reports, 44, 886 (2018). DOI: 10.1134/S1063780X18090143
  19. R. Nishio, K. Tuchida, M. Tooma, K. Suzuki. J. Appl. Phys., 72 (10), 4548 (1992). DOI: 10.1063/1.352334
  20. A.A. Zenin, A.S. Klimov, V.A. Burdovitsin, E.M. Oks. Tech. Phys. Lett., 39 (5), 454 (2013). DOI: 10.1134/S1063785013050271
  21. V.A. Burdovitsin, I.Yu. Bakeev, A.A. Zenin, D.B. Zolotukhin, A.V. Kazakov, A.S. Klimov, A.V. Medovnik, E.M. Oks, A.V. Tyunkov. Dokladi TUSUR, 19 (2), 5 (2016). (In Russian). DOI: 10.21293/1818-0442-2016-19-2-5-10
  22. A.V. Kazakov, A.V. Medovnik, E.M. Oks, N.A. Panchenko. Rev. Sci. Instruments, 91, 093304 (2020). DOI: 10.1063/5.0023172
  23. V.A. Burdovitsin, A.S. Klimov, A.V. Medovnik, E.M. Oks. Plasma Sources Sci. Technol., 19 (5), 055003 (2010). DOI: 10.1088/0963-0252/19/5/055003
  24. V.A. Burdovitsin, V.S. Gul'kina, A.V. Medovnik, E.M. Oks. Tech. Phys., 58 (12), 1837 (2013). DOI: 10.1134/S1063784213120086
  25. V.A. Burdovitsin, E.M. Oks, D.B. Zolotukhin. J. Phys. D: Appl. Phys., 51 (30), 304006 (2018). DOI: 10.1088/1361-6463/aace4a
  26. A.S. Klimov, E.M. Oks, A.P. Andreichik, M.I. Lomaev. Tech. Phys., 62 (2), 218 (2017). DOI: 10.1134/S1063784217020128
  27. D.B. Zolotukhin, V.A. Burdovitsin, E.M. Oks. Plasma Sources Sci. Technol., 25 (2), 015001 (2015). DOI: 10.1088/0963-0252/25/1/015001
  28. V.P. Konovalov, M.A. Skorik, E.E. Son. Proceedings of XX International Conference on Phenomena in Ionized Gases (Italy, 1991), p. 405-406
  29. O.V. Kozlov. Electrical Probe in Plasma (Atomizdat, M., 1969) (in Russian)
  30. Yu.P. Raizer. Gas Discharge Physics (Springer, Berlin, 1991)
  31. R.S. Mangina, J.M. Ajello, R.A. West, D. Dziczek. Astrophys. J. Supplement Series, 196 (1), 13 (2011). DOI: 10.1088/0067-0049/196/1/13
  32. V. Guerra, P.A. Sa, J. Loureiro. Europ. Phys. J.-Appl. Phys., 28, 125 (2004). DOI: 10.1051/epjap:2004188
  33. W. Hwang, Y.K. Kim, M.E. Rudd. J. Chem. Phys., 104, 2956 (1996). DOI: 10.1063/1.471116
  34. D.E. Shemansky, X. Liu. J. Geophys. Research: Space Phys., 110 (A7), A073071 (2005). DOI: 10.1029/2005JA011062
  35. Y. Itikawa. J. Phys. Chem. Refer. Data, 35, 31 (2006). DOI: 10.1063/1.1937426
  36. S.G. Walton, D.R. Boris, S.C. Hernandez, E.H. Lock, Tz.B. Petrova, G.M. Petrov, R.F. Fernsler. ECS J. Solid State Sci. Technol., 4 (6) N5033 (2015). DOI: 10.1149/2.0071506jss
  37. Y.-K. Kim, J.-P. Desclaux. Phys. Rev. A, 66, 012708 (2002). DOI: 10.1103/PhysRevA.66.012708
  38. A.V. Tyunkov, A.A. Andronov, Y.G. Yushkov, D.B. Zolotukhin. Pisma v ZHTF, 49 (10), 13 (2023) (in Russian). DOI: 10.21883/PJTF.2023.10.55427.19539
  39. J. Cazaux. Nucl. Instruments and Methods in Phys. Res. Section B: Beam Interactions with Materials and Atoms, 244 (2), 307 (2006). DOI: 10.1016/j.nimb.2005.10.006
  40. N.R. Rajopadhye, V.A. Joglekar, V.N. Bhoraskar, S.V. Bhoraskar. Solid State Commun., 60 (8), 675 (1986). DOI: 10.1016/0038-1098(86)90266-8
  41. V.A. Burdovitsin, D.B. Zolotukhin, E.M. Oks, N.A. Panchenko. J. Phys. D: Appl. Phys., 52 (28), 285204 (2019). DOI: 10.1088/1361-6463/ab1381
  42. E.I. Rau, E.N. Evstaf'eva, M.V. Andrianov. Phys. Solid State, 50, 621 (2008). DOI: 10.1134/S1063783408040057
  43. M. Kaminsky. Atomic and Ionic Impact Phenomena on Metal Surfaces (Academic, NY., 1965)

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru