Formation of beam plasma in nitrogen atmosphere by a pulsed electron beam near a dielectric target in the forevacuum pressure range
Kazakov A. V.
1, Oks E. M.
1,2, Panchenko N. A.
11Tomsk State University of Control Systems and Radioelectronics, Tomsk, Russia
2Institute of High Current Electronics, Siberian Branch, Russian Academy of Sciences, Tomsk, Russia
Email: andrykazakov@gmail.com, oks@fet.tusur.ru, PanchenkoNA@vtomske.ru
Features of the processes of beam plasma formation near a dielectric (aluminum oxide ceramic) target being irradiated by an intense pulsed electron beam in the forevacuum pressure range (4-15 Pa) have been investigated. It has been established that the density of the beam plasma near the irradiated dielectric target is higher than in the case of "free" propagation of the electron beam. The observed increase in plasma density depends on the emission current (electron beam current), gas pressure, and accelerating voltage. The influence of the dielectric target on the beam plasma density is due to emission of electrons from the target surface and the uncompensated negative potential on the target surface, which determines the energy of emitted electrons. An increase in gas pressure leads to a smaller increase in the beam plasma density due to a decrease in the absolute value of the negative potential. Varying the electron beam current and accelerating voltage provide to control the beam plasma density. Keywords: beam plasma, pulsed electron beam, forevacuum pressure range, plasma-cathode electron source.
- P.K. Chu, X.P. Lu. Low Temperature Plasma Technology: Methods and Applications (CRC Press, Boca Raton, 2013)
- E.B. Hooper Jr, O.A. Anderson, P.A. Willmann. Phys. Fluids, 22 (12), 2334 (1979). DOI: 10.1063/1.862545
- K.S. Klopovsky, A.V. Mukhovatova, A.M. Popov, N.A. Popov, O.B. Popovicheva, T.V. Rakhimova. J. Phys. D: Appl. Phys., 27 (7), 1399 (1994). DOI: 10.1088/0022-3727/27/7/010
- S.G. Walton, C. Muratore, D. Leonhardt, R.F. Fernsler, D.D. Blackwell, R.A. Meger. Surf. Coatings Technol., 186 (1-2), 40 (2004). DOI: 10.1016/j.surfcoat.2004.04.007
- E.H. Lock, R.F. Fernsler, S.G. Walton. Plasma Sources Sci. Technol., 17 (2), 025009 (2008). DOI: 10.1088/0963-0252/17/2/025009
- E.H. Lock, R.F. Fernsler, S.P. Slinker, I.L. Singer, S.G. Walton. J. Phys. D: Appl. Phys., 47, 425206 (2014). DOI: 10.1088/0022-3727/47/42/425206
- J.A. Aguilera, C. Aragon. Spectrochim. Acta Part B: Atomic Spectroscopy, 59 (12), 1861 (2004). DOI: 10.1016/j.sab.2004.08.003
- L.J. Radziemski. Lasers-Induced Plasmas and Applications (CRC Press, Boca Raton, 2020)
- T. Vasilieva, S. Lopatin, V. Varlamov, V. Miasnikov, A.M. Hein, M. Vasiliev. Pure Appl. Chem., 88 (9), 873 (2016). DOI: 10.1515/pac-2016-0603
- T.M. Vasilieva, I.K. Naumova, O.V. Galkina, E.V. Udoratina, L.A. Kuvschinova, M.N. Vasiliev, Khin Maung Htay, Htet Ko Ko Zaw. IEEE Transactions on Plasma Sci., 48 (4), 1035 (2020). DOI: 10.1109/TPS.2020.2980200
- A.S. Klimov, I.Yu. Bakeev, E.M. Oks, V.T. Tran, A.A. Zenin. Vacuum, 196, 110722 (2022). DOI: 10.1016/j.vacuum.2021.110722
- D. Leonhardt, C. Muratore, S.G. Walton, D.D. Blackwell, R.F. Fernsler, R.A. Meger. Surf. Coatings Technol., 177, 682 (2004). DOI: 10.1016/j.surfcoat.2003.08.007
- S.G. Walton, D.R. Boris, S.C. Hernandez, E.H. Lock, T.B. Petrova, G.M. Petrov, E.A. Joseph. Microelectron. Engineer., 168, 89 (2017). DOI: 10.1016/j.mee.2016.11.003
- N.V. Gavrilov, A.I. Men'shakov. Tech. Phys., 57 (3), 399 (2012). DOI: 10.1134/S1063784212030073
- T. Vasilieva, I. Sokolov, A. Sigarev, A. Tun Win. Open Chem., 13 (1), 204 (2015). DOI: 10.1515/chem-2015-0015
- S. Ghosh, D.R. Boris, S.C. Hernandez, C.A. Zorman, S.G. Walton, R.M. Sankaran. Plasma Processes and Polymers, 14 (12), 1700079 (2017). DOI: 10.1002/ppap.201700079
- V.O. Konstantinov, V.G. Shchukin, R.G. Sharafutdinov, V.M. Karsten, G.G. Gartvich, O.I. Semenova. Plasma Phys. Reports, 36, 1278 (2010). DOI: 10.1134/S1063780X10130313
- R.G. Sharafutdinov, V.O. Konstantinov, V.I. Fedoseev, V.G. Shchukin. Plasma Phys. Reports, 44, 886 (2018). DOI: 10.1134/S1063780X18090143
- R. Nishio, K. Tuchida, M. Tooma, K. Suzuki. J. Appl. Phys., 72 (10), 4548 (1992). DOI: 10.1063/1.352334
- A.A. Zenin, A.S. Klimov, V.A. Burdovitsin, E.M. Oks. Tech. Phys. Lett., 39 (5), 454 (2013). DOI: 10.1134/S1063785013050271
- V.A. Burdovitsin, I.Yu. Bakeev, A.A. Zenin, D.B. Zolotukhin, A.V. Kazakov, A.S. Klimov, A.V. Medovnik, E.M. Oks, A.V. Tyunkov. Dokladi TUSUR, 19 (2), 5 (2016). (In Russian). DOI: 10.21293/1818-0442-2016-19-2-5-10
- A.V. Kazakov, A.V. Medovnik, E.M. Oks, N.A. Panchenko. Rev. Sci. Instruments, 91, 093304 (2020). DOI: 10.1063/5.0023172
- V.A. Burdovitsin, A.S. Klimov, A.V. Medovnik, E.M. Oks. Plasma Sources Sci. Technol., 19 (5), 055003 (2010). DOI: 10.1088/0963-0252/19/5/055003
- V.A. Burdovitsin, V.S. Gul'kina, A.V. Medovnik, E.M. Oks. Tech. Phys., 58 (12), 1837 (2013). DOI: 10.1134/S1063784213120086
- V.A. Burdovitsin, E.M. Oks, D.B. Zolotukhin. J. Phys. D: Appl. Phys., 51 (30), 304006 (2018). DOI: 10.1088/1361-6463/aace4a
- A.S. Klimov, E.M. Oks, A.P. Andreichik, M.I. Lomaev. Tech. Phys., 62 (2), 218 (2017). DOI: 10.1134/S1063784217020128
- D.B. Zolotukhin, V.A. Burdovitsin, E.M. Oks. Plasma Sources Sci. Technol., 25 (2), 015001 (2015). DOI: 10.1088/0963-0252/25/1/015001
- V.P. Konovalov, M.A. Skorik, E.E. Son. Proceedings of XX International Conference on Phenomena in Ionized Gases (Italy, 1991), p. 405-406
- O.V. Kozlov. Electrical Probe in Plasma (Atomizdat, M., 1969) (in Russian)
- Yu.P. Raizer. Gas Discharge Physics (Springer, Berlin, 1991)
- R.S. Mangina, J.M. Ajello, R.A. West, D. Dziczek. Astrophys. J. Supplement Series, 196 (1), 13 (2011). DOI: 10.1088/0067-0049/196/1/13
- V. Guerra, P.A. Sa, J. Loureiro. Europ. Phys. J.-Appl. Phys., 28, 125 (2004). DOI: 10.1051/epjap:2004188
- W. Hwang, Y.K. Kim, M.E. Rudd. J. Chem. Phys., 104, 2956 (1996). DOI: 10.1063/1.471116
- D.E. Shemansky, X. Liu. J. Geophys. Research: Space Phys., 110 (A7), A073071 (2005). DOI: 10.1029/2005JA011062
- Y. Itikawa. J. Phys. Chem. Refer. Data, 35, 31 (2006). DOI: 10.1063/1.1937426
- S.G. Walton, D.R. Boris, S.C. Hernandez, E.H. Lock, Tz.B. Petrova, G.M. Petrov, R.F. Fernsler. ECS J. Solid State Sci. Technol., 4 (6) N5033 (2015). DOI: 10.1149/2.0071506jss
- Y.-K. Kim, J.-P. Desclaux. Phys. Rev. A, 66, 012708 (2002). DOI: 10.1103/PhysRevA.66.012708
- A.V. Tyunkov, A.A. Andronov, Y.G. Yushkov, D.B. Zolotukhin. Pisma v ZHTF, 49 (10), 13 (2023) (in Russian). DOI: 10.21883/PJTF.2023.10.55427.19539
- J. Cazaux. Nucl. Instruments and Methods in Phys. Res. Section B: Beam Interactions with Materials and Atoms, 244 (2), 307 (2006). DOI: 10.1016/j.nimb.2005.10.006
- N.R. Rajopadhye, V.A. Joglekar, V.N. Bhoraskar, S.V. Bhoraskar. Solid State Commun., 60 (8), 675 (1986). DOI: 10.1016/0038-1098(86)90266-8
- V.A. Burdovitsin, D.B. Zolotukhin, E.M. Oks, N.A. Panchenko. J. Phys. D: Appl. Phys., 52 (28), 285204 (2019). DOI: 10.1088/1361-6463/ab1381
- E.I. Rau, E.N. Evstaf'eva, M.V. Andrianov. Phys. Solid State, 50, 621 (2008). DOI: 10.1134/S1063783408040057
- M. Kaminsky. Atomic and Ionic Impact Phenomena on Metal Surfaces (Academic, NY., 1965)
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.