Physics of the Solid State
Volumes and Issues
Study of photoinduced processes in single solid-state nanopores with integrated plasmonic structures
Vaulin N. V. 1,2, Afonicheva P. K.2, Lebedev D. V.1,2,3, Bukatin A. S.1,2, Mukhin I. S.1, Evstrapov A. A.2
1Alferov Federal State Budgetary Institution of Higher Education and Science Saint Petersburg National Research Academic University of the Russian Academy of Sciences, St. Petersburg, Russia
2Institute for Analytical Instrumentation of the Russian Academy of Sciences, Saint Petersburg, Russia
3St. Petersburg State University, St. Petersburg, Russia
Email: nikitavaylin@mail.ru

PDF
The transport properties of solid-state nanopores with integrated plasmonic bow-tie antennas are studied. Plasmonic antennas were formed on "freely suspended" SiN membranes 20 nm thick. Nanopores with a diameter of ~5 nm were formed in the regions between the arms of the plasmonic bow-tie antennas. Irradiation of the nanopore region with a laser with a wavelength of 632 nm leads to an increase in the level of ion current and an increase in the conductivity of the pore by 10%. Irradiation of a membrane of similar thickness without a nanopore does not lead to a sustained increase in the current level. The increase in nanopore conductivity may be associated with a change in the configuration of double electrical layers on the pore walls, as well as with local heating of the pore region caused by the presence of plasmonic structures. Keywords: SiN membrane, plasmonic antennas, microfluidics, ion transport, optical lithography.
  1. J.D. Spitzberg, A. Zrehen, X.F. van Kooten, A. Meller. Adv. Mater. 31, 23, 1900422 (2019). https://doi.org/10.1002/adma.201900422
  2. R. Wang, T. Gilboa, J. Song, D. Huttner, M.W. Grinstaff, A. Meller. ACS Nano 12, 11, 11648 (2018). https://doi.org/10.1021/acsnano.8b07055
  3. D. Garoli, H. Yamazaki, N. Maccaferri, M. Wanunu. Nano Lett. 19, 11, 7553 (2019). https://doi.org/10.1021/acs.nanolett.9b02759
  4. I.M. Derrington, T.Z. Butler, M.D. Collins, E. Manrao, M. Pavlenok, M. Niederweis, J.H. Gundlach. Proc. Nat. Acad. Sci. 107, 37, 16060 (2010). https://doi.org/10.1073/pnas.1001831107
  5. X. Shi, D. Verschueren, S. Pud, C. Dekker. Small 14, 18, 1703307 (2018). https://doi.org/10.1002/smll.201703307
  6. W. Lu, R. Hu, X. Tong, D. Yu, Q. Zhao. Small Structures 1, 1, 2000003 (2020). https://doi.org/10.1002/sstr.202000003
  7. W. Li, J. Zhou, N. Maccaferri, R. Krahne, K. Wang, D. Garoli. Anal. Chem. 94, 2, 503 (2022). https://doi.org/10.1021/acs.analchem.1c04459
  8. F. Nicoli, D. Verschueren, M. Klein, C. Dekker, M.P. Jonsson. Nano Lett. 14, 12, 6917 (2014). https://doi.org/10.1021/nl503034j
  9. N.V. Vaulin, P.K. Afonicheva, D.V. Lebedev, A.S. Bukatin, I.S. Mukhin. Peter the Great St. Petersburg Polytechnic University J. Phys. Math. 16, 1.1, 385 (2023). https://doi.org/10.18721/JPM.161.165

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru