Topological features of the electronic structure and phase diagram of the chiral ferromagnet MnSi
Povzner A. A.
1, Volkov A. G.
1, Chernikova M.A.
11Ural Federal University after the first President of Russia B.N. Yeltsin, Yekaterinburg, Russia
Email: a.a.povzner@urfu.ru, agvolkov@yandex.ru, batman_0685@mail.ru
It is shown that the reason for the appearance of the complex pattern of chiral spin short-range order observed in the helical ferromagnet MnSi is a topological electronic transition (TET). TET occurs under conditions of thermodynamic instability of ferromagnetism, when the mode-mode parameter in the Ginzburg-Landau functional becomes negative, and the chemical potential falls into the energy region of Berry curvature. It was found that the topological features of the electronic structure lead to the appearance of skyrmion lattices phases and fluctuations of left-chiral spin helices. In the paramagnetic region, a phase of fluctuations of left- and right-handed spin spirals appears. The emergence of a thermodynamically stable non-chiral paramagnetic phase is accompanied by a shift in the chemical potential beyond the energy region of Berry curvature and an abrupt disappearance of local magnetization (delayed magnetic phase transition). The constructed h-T phase diagram (h is the magnetic field strength, T is the temperature) is consistent with experiment. Keywords: Berry phases, fluctuations, chiral spin spirals, skyrmions.
- A. Bauer, C. Pfleiderer. Springer Ser. Mater. Sci. 228, 1--28 (2016)
- S.M. Stishov, A.E. Petrova. UFN 187, 12, 1365 (2017). (in Russian)
- S.M. Stishov, A.E. Petrova. UFN, 193, 614 (2023). (in Russian)
- P. Bak, M.H. Jensen. J. Phys. C 13, L1881 (1980)
- S.A. Pikin. JETP Lett. 106, 793 (2017)
- A.A. Povzner, A.G. Volkov, T.A. Nogovitsyna. Physica B: Condens. Matter 536, 408 (2018). https://doi.org/10.1016/j.physb.2017.10.112
- A.A. Povzner, A.G. Volkov, I.A. Yasyulevich. FTT 58, 1283 (2016). (in Russian)
- M. Brando, D. Belitz, F.M. Grosche, T.R. Kirkpatrick. Rev. Mod. Phys. 88, 25006 (2016). https://doi.org/10.1103/RevModPhys.88.025006
- A. Neubauer, C. Pfleiderer, B. Binz, A. Rosch, R. Ritz, P.G. Niklowitz, P. Boni. Phys. Rev. Lett. 102, 186602 (2009)
- M.A. Wilde, M. Dodenhoft, A. Niedermayr, A. Bauer, M.M. Hirschmann, K. Alpin, A.P. Schnyder, C. Pfleiderer. Nature 594, 374 (2021)
- C. Pappas, E. Lelievre-Berna, P. Falus, P.M. Bentley, E. Moskvin, S. Grigoriev, P. Fouquet, B. Farago. Phys. Rev. Lett. 102, 197202 (2009)
- T. Moria. Spivoviye fluktuatsii v magnetikakh s kollektivizirovannymi elektronami. Mir, M. (1988), 288 s. (in Russian)
- A.A. Abrikosov, L.P. Gorkov, I.E. Dzyaloshinskiy. Metody kvantovoy teorii polya v statisticheskoy fizike. Fizmatgiz, M. (1962), 444 s. (in Russian)
- M.G. Vergniory, L. Elcoro, C. Felser, N. Regnault, B.A. Bernevig, Z. Wang. Nature 566, 480 (2019). https://doi.org/10.1038/s41586-019-0954-4
- Y. Luo, S. Lin, D.M. Fobes, Z. Liu, E.D. Bauer, J.B. Betts, A. Migliori, J.D. Yhompson, M. Janoshek, B. Maiorov. Phys. Rev. B 97, 104423 (2018)
- A.A. Povzner, A.G. Volkov, T.M. Nuretdinov. J. Magn. Magn. Mater. 507, 166826 (2020)
- A.A. Povzner, A.G. Volkov, M.A. Chernikova, T.A. Nogovitsyna. Solid State. Commun. 371, 115279 (2023)
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.