Telegin A. V.
1, Bessonov V. D.
1, Lobov I. D.
1, Teplov V. S.
11M.N. Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences, Yekaterinburg, Russia
Email: telegin@imp.uran.ru, bessonov@imp.uran.ru, i_lobov@imp.uran.ru, teplov@imp.uran.ru
Samples of metallic thin-film nanostructures consisting of ferromagnetic (FM) and heavy metal (HM) layers were fabricated using magnetron sputtering techniques, and current-carrying structures with locally enhanced current density were formed. The energy of perpendicular magnetic anisotropy and the current density required for magnetization reversal of the structures were determined from magnetic and transport measurements. Modeling of the specific resistance and current flowing through the nanostructure layers responsible for generating spin current was performed. It was shown that all samples exhibit a magnetic response to current flow due to the Hall spin effect. The specific current-induced field parameters and the efficiency of current-induced switching were determined for the obtained nanostructures, as well as their dependence on the type of HM and the thickness of the FM layer. The results of this work are of interest for studying transport effects in multilayer structures and developing methods for controlling spin textures to create new memory and computing devices. Keywords:Magnetron sputtering, current-induced magnetization, Hall effect, spintronics, nanostuctures, spin current, Kerr microscopy.
- A. Fert. UFN 178, 12, 1336 (2008). (in Russian) https://doi.org/10.3367/UFNr.0178.200812f.1336
- Yu.K. Fetisov, A.S. Sigov, Radioelektronika. Nanosistemy. Informatsionnyie tekhnolgii 10, 3, 343 (2018). (in Russian)
- A.V. Ognev, A.S. Samardak. Vestn. DO RAN 4, (128). 70 (2006). (in Russian)
- A. Manchon, J. v Zelezny, I.M. Miron, T. Jungwirth, J. Sinova, A. Thiaville, K. Garello, P. Gambardella. Rev. Mod. Phys. 91, 3, 035004 (2019). https://doi.org/10.1103/RevModPhys.91.035004
- V.V. Ustinov, I.A. Yasyulevich, N.G. Bebenin. Phys. Met. Metallography 124, 2, 195 (2023)
- A.A. Stashkevich. J. Russ. Univ. Radioelectron. 22, 6, 45 (2019)
- A. Fert, N. Reyren, V. Cros. Nature Rev. Mater. 2, 7, 17031 (2017). https://doi.org/10.1038/natrevmats.2017.31
- I. Dzyaloshinsky. Sov. Phys. JETP 5, 6, 1259 (1957); J. Phys. Chem. Solids 4, 4, 241 (1958)
- T. Moriya. Phys. Rev. Lett. 4, 5, 228 (1960); Phys. Rev. 120, 1, 91 (1960)
- A.N. Bogdanov, U.K. Rob ler. Phys. Rev. Lett. 87, 3, 037203 (2001). https://doi.org/10.1103/PhysRevLett.87.037203
- R.E. Camley, K.L. Livesey. Surface Sci. Rep. 78, 3, 100605 (2023). https://doi.org/10.1016/j.surfrep.2023.100605
- A. Fert, F.N. Van Dau. Comptes Rendus Phys. 20, 7-8, 817 (2019). https://doi.org/10.1016/j.crhy.2019.05.020
- A.N. Bogdanov, C. Panagopoulos. Nature Rev. Phys. 2, 9, 492 (2020). https://doi.org/10.1038/s42254-020-0203-7
- N. Nagaosa, Y. Tokura. Nature Nanotechnol. 8, 12, 899 (2013). https://doi.org/10.1038/nnano.2013.243
- K. Everschor-Sitte, J. Masell, R.M. Reeve, M. Klaui. J. Appl. Phys. 124, 24, 240901 (2018). https://doi.org/10.1063/1.5048972
- X. Zhang, Y. Zhou, K.M. Song, T.E. Park, J. Xia, M. Ezawa, S. Woo. J. Phys.: Condens. Matter 32, 14, 143001 (2020). https://doi.org/10.1088/1361-648X/ab5488
- B. Kaviraj, J. Sinha. ECS J. Solid State Sci. Technol. 11, 11, 115003 (2022). https://doi.org/10.1149/2162-8777/ac9eda
- J. Ding, X. Yang, T. Zhu. J. Phys. D 48, 11, 115004 (2015). https://doi.org/10.1088/0022-3727/48/11/115004
- F. Kammerbauer, F. Freimuth, R. Fro mter, Y. Mokrousov, M. Kla ui. J. Phys. Soc. Jpn 92, 8, 081007 (2023). https://doi.org/10.7566/JPSJ.92.081007
- W. Jiang, G. Chen, K. Liu, J. Zang, S.G.E. Te Velthuis, A. Hoffmann. Phys. Rep. 704, 1 (2017). https://doi.org/10.1016/j.physrep.2017.08.00
- Y. Zhou, E. Iacocca, A.A. Awad, R.K. Dumas, F.C. Zhang, H.B. Braun, J. Angstrem kerman. Nature Commun. 6, 1, 8193 (2015). https://doi.org/10.1038/ncomms9193
- J. Sinova, S.O. Valenzuela, J. Wunderlich, C.H. Back, T. Jungwirth. Rev. Mod. Phys. 87, 4, 1213 (2015). https://doi.org/10.1103/RevModPhys.87.1213
- O. Heinonen, W. Jiang, H. Somaily, S.G.E. Te Velthuis, A. Hoffmann. Phys. Rev. B 93, 9, 094407 (2016). https://doi.org/10.1103/PhysRevB.93.094407
- B. Paikaray, M. Kuchibhotla, A. Haldar, C. Murapaka. Nanotechnol. 34, 22, 225202 (2023). https://doi.org/10.1088/1361-6528/acbeb3
- A.I. Bezverkhnii, V.A. Gubanov, A.V. Sadovnikov, R.B. Morgunov. Phys. Solid State 63, 12, 2285 (2021)
- H. Yang, A. Thiaville, S. Rohart, A. Fert, M. Chshiev. Phys. Rev. Lett. 115, 26, 267210 (2015). https://doi.org/10.1103/PhysRevLett.115.267210
- J. Park, T. Kim, G.W. Kim, V. Bessonov, A. Telegin, I.G. Iliushin, A.A. Pervishko, D. Yudin, A.Yu. Samardak, A.V. Ognev, J. Cho, A.S. Samardak, Y.K. Kim. Acta Materialia 241, 118383 (2022). https://doi.org/10.1016/j.actamat.2022.118383
- A.S. Samardak, A.G. Kolesnikov, A.V. Davydenko, M.E. Steblii, A.V. Ognev. Phys. Met. Metallogr. 123, 3, 238 (2022). https://doi.org/10.1134/S0031918X22030097
- B.A. Ivanov. Fizika nizkikh temperatur 45, S9, 1095 (2019). (in Russian)
- Y. Zhang, X. Feng, Z. Zheng, Z. Zhang, K. Lin, X. Sun, G. Wang, J. Wang, J. Wei, P. Vallobra, Y. He, Z. Wang, L. Chen, K. Zhang, Y. Xu, W. Zhao. Appl. Phys. Rev. 10, 1 (2023). https://doi.org/10.1063/5.0104618
- S.K. Kim, G.S.D. Beach, K.-J. Lee T. Ono, T. Rasing, H. Yang. Nature Mater. 21, 1, 24 (2022). https://doi.org/10.1038/s41563-021-01139-4
- B. Divinskiy, V.E. Demidov, A. Kozhanov, A.B. Rinkevich, S.O. Demokritov, S. Urazhdin. Appl. Phys. Lett. 111, 3, 032405 (2017)
- A. Hoffmann. IEEE Trans. Magn. 49, 10, 5172 (2013). https://doi.org/10.1109/TMAG.2013.2262947
- V.E. Demidov, S. Urazhdin, R. Liu, B. Divinskiy, A. Telegin, S.O. Demokritov. Nature Commun. 7, 1, 10446 (2016). https://doi.org/10.1038/ncomms10446
- M.E. Stebliy, M.A. Bazrov, Z.Z. Namsaraev, M.E. Letushev, A.G. Kozlov, V.A. Antonov, E.V. Stebliy, A.V. Davydenko, A.V. Ognev, Y. Shiota, T. Ono, A.S. Samardak. ACS Appl. Mater. Interfaces 15, 34, 40792 (2023). https://doi.org/10.1021/acsami.3c08979
- A.G. Kolesnikov, M.E. Stebliy, A.V. Ognev, A.S. Samardak, A.N. Fedorets, V.S. Plotnikov, X. Han, L.A. Chebotkevich. J. Phys. D 49, 42, 425302 (2016). https://doi.org/10.1088/0022-3727/49/42/425302
- A.G. Kolesnikov, A.V. Ognev, M.E. Stebliy, L.A. Chebotkevich, A.V. Gerasimenko, A.S. Samardak. J. Magn. Magn. Mater. 454, 78 (2018). https://doi.org/10.1016/j.jmmm.2018.01.056
- W.L. Yang, Z.R. Yan, Y.W. Xing, C. Cheng, C.Y. Guo, X.M. Luo, M.K. Zhao, G.Q. Yu, C.H. Wan, M.E. Stebliy, A.V. Ognev, A.S. Samardak, X.F. Han. Appl. Phys. Lett. 120, 12, 122402 (2022). https://doi.org/10.1063/5.0079400
- Z. Zhao, Z. Xie, Y. Sun, Y. Yang, Y. Cao, L. Liu, D. Pan, N. Lei, Z. Wei, J. Zhao, D. Wei. Phys. Rev. B 108, 2, 024429 (2023). https://doi.org/10.1103/PhysRevB.108.024429
- R.Q. Zhang, L.Y. Liao, X.Z. Chen, T. Xu, L. Cai, M.H. Guo, H. Bai, L. Sun, F.H. Xue, J. Su, X. Wang, C.H. Wan, H. Bai, Y.X. Song, R.Y. Chen, N. Chen, W.J. Jiang, X.F. Kou, J.W. Cai, H.Q. Wu, F. Pan, C. Song. Phys. Rev. B 101, 21, 214418 (2020). https://doi.org/10.1103/PhysRevB.101.214418
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.