Influence of temperature on shock compressibility and spall strength of ABS under weak shock waves
Cherepanov I. A.
1, Savinykh A. S.
1, Garkushin G. V.
1, Razorenov S. V.
11Federal Research Center for Problems of Chemical Physics and Medical Chemistry, Russian Academy of Sciences, Chernogolovka, Moscow region, Russia
Email: i.cherepanov95@yandex.ru, savas@ficp.ac.ru, garkushin@ficp.ac.ru, razsv@ficp.ac.ru
The influence of temperature on the strength characteristics of ABS (copolymer of acrylonitrile, butadiene and styrene) under high strain rate is investigated. Spall strength was measured at a maximum compression stress of 0.6 GPa in the initial temperature range of samples 20-115oC. An explanation is proposed for the abnormal increase in the value of the spall strength when the glass transition temperature is exceeded based on the analysis of a possible change in the internal structure. The dependences of the shock wave velocity on the particle velocity (Hugoniots) in the range of maximum shock compression stresses from 0.1 GPa to 1.0 GPa at different temperatures are constructed. Keywords: ABS, shock waves, deformation, temperature, spall strength, Hugoniot.
- T.J. Holmquist, J. Bradley, A. Dwivedi, D. Casem. The Europ. Phys. J. Special Topics, 225, 343 (2016). DOI: 10.1140/epjst/e2016-02636-5
- N.K. Bourne. J. Dynamic Behavior Mater., 2, 33 (2016). DOI: 10.1007/s40870-016-0055-5
- J. Richeton, S. Ahzi, K.S. Vecchio, F.C. Jiang, R.R. Adharapurapu. Intern. J. Solids Structures, 43, 7 (2006). DOI: 10.1016/j.ijsolstr.2005.06.040
- L.M. Barker, R.E. Hollenbach. J. Appl. Phys., 41 (10), 4208 (1970). DOI: 10.1063/1.1658439
- B.E. Clements. AIP Conf. Proceed., 1195 (1), 1223 (2009). DOI: 10.1063/1.3295025
- Z.N. Yin, T.J. Wang. Mater. Sci. Eng.: A, 527 (6), 1461 (2010). DOI: 10.1016/j.msea.2009.11.025
- A.A. Chevrychkina, G.A. Volkov, A.D. Estifeev. Proced. Structural Integrity, 6, 283 (2017). DOI: 10.1016/j.prostr.2017.11.043
- S. Sharma, S. Chandra, V.M. Chavan, A.K. Nayak. IOP Conf. Series: Mater. Sci. Eng., 1248 (1), 012009 (2022). DOI: 10.1088/1757-899X/1248/1/012009
- S.A. Atroshenko, A.A. Chevrychkina, A.D. Evstifeev, G.A. Volkov. Phys. Solid State, 61 (11), 2075 (2019). DOI: 10.1134/S1063783419110052
- E.B. Zaretsky, G.I. Kanel. J. Appl. Phys., 126 (8), 085902 (2019). DOI: 10.1063/1.5116075
- I.A. Cherepanov, A.S. Savinykh, G.V. Garkushin, S.V. Razorenov. Tech. Phys., 68 (5), 622 (2023). DOI: 10.21883/TP.2023.05.56068.10-23
- G.I. Kanel. TBT, 58 (4), 596 (2020) (in Russian). DOI: 10.1134/S0018151X20040057
- M.E. Brown, P.K. Gallagher. Handbook of Thermal Analysis and Calorimetry: Recent Advances, Techniques and Applications (Elsevier, 2011)
- G.I. Kanel, S.V. Razorenov, A.S. Savinykh, A. Rajendran, Z. Chen. AIP Conf. Proceed., 845, 876 (2006). DOI: 10.1063/1.2263461
- L.M. Barker, R.E. Hollenbach. J. Appl. Phys., 43 (11), 4669 (1972). DOI: 10.1063/1.1660986
- Yu.B. Kalmykov, G.I. Kanel, I.P. Parkhomenko, A.V. Utkin, V.E. Fortov. PMTF, 1, 126 (1990) (in Russian)
- G.I. Kanel. Intern. J. Fracture, 163, 173 (2010). DOI: 10.1007/s10704-009-9438-0
- G.I. Kanel. PMTF, 42 (2), 194 (2001) (in Russian)
- D.O. Kazmer, A.R. Colon, A.M. Peterson, S.K. Kim. Additive Manufacturing, 46, 102106 (2021). DOI: 10.1016/j.addma.2021.102106
- H. Carre, L. Daudeville. J. Physique IV, 6 (1), 175 (1996). DOI: 10.1051/jp4:1996117
- J.L. Jordan, D.T. Casem, J. Robinette. J. Appl. Phys., 131 (16), 165903 (2022). DOI: 10.1063/5.0082477
- A.K. Varshneya, J.C. Mauro. Fundamentals of Inorganic Glasses (Elsevier, 2019)
- E. Symoens, R. Van Coile, J. Belis. Glass Structures Eng., 7 (3), 457 (2022). DOI: 10.1007/s40940-022-00197-7
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.