On the determination of the diffusion length of charge carriers in the absorber material of 2D mercury-cadmium-tellurium-based focal-plane-array detectors from spot-scan profiles
Stuchinsky V. A.1, Vishnyakov A. V.1, Vasiliev V. V.1
1Rzhanov Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
Email: stuchin@isp.nsc.ru, vishn@isp.nsc.ru, vas@isp.nsc.ru
Using the Monte Carlo method, we studied the influence of the lateral transport of photogenerated charge carriers along diodes on the result of determining, from measured spot-scan profiles, the bulk length of charge-carrier diffusion in the absorber material of focal-plane diode arrays. An estimate of the corresponding inaccuracy in determining this length is given. The numerical simulation was carried out using the example of focal-plane diode arrays with 30 μm pitch, 14 x 14-μm diode size, and 6-μm thick absorber layer. The range of examined values of the bulk diffusion length of charge carriers in the absorber material was from 5 to 30 μm. It is shown that the analysis performed makes it possible to describe the fine structure of spot-scan profiles at both high and low levels of diode photocurrents. It was found that the method used yields the values of the bulk diffusion length of charge carriers increased compared to the true ones by approximately 20-25%. Keywords: 2D IR focal-plane-array detector, photodiode, diode photoresponse, spot-scan profile, illumination spot, charge-carrier diffusion length, mercury-cadmium-tellurium material, Monte Carlo simulation.
- A. Rogalski. Infrared Detectors, Second Edition (CRC Press, Boca Raton, 2010)
- W. Cabanski, R. Breiter, K-H. Mauk, W. Rode, J. Ziegler, L. Ennenga, H. Lipinski, T. Wehrhahn. Proc. SPIE, 4028 (2000). DOI: 10.1117/12.391734
- P.S. Lazarev, M.G. Mazin, A.V. Sidorin, V.N. Solyakov, E.O. Trenina, K.A. Hamidullin, A.D. Yudovskaya. Prikladnaya fizika, 4, 107 (2012) (in Russian)
- O. Schreer, M. Lopez Saenz, Ch. Peppermuller, U. Schmidt. Proc. SPIE, 6542, 65421C (2007). DOI: 10.1117/12.725273
- W. Userell. in: Design of Optical Systems, ed. by R. Shannon, J. Vyant (Mir, Moscow, 1983)
- A. Rogalski. in: Mid-infrared Optoelectronics. Materials, Devices and Applications, ed. by E. Tournie, L. Cerutti (Elsevier Ltd., 2020), DOI: 10.1016/B978-0-08-102709-7.00007-3
- V. Srivastav, R. Pal, H.P. Vyas. Opto-Electron. Rev., 13 (3), 197 (2005)
- E. Belas, R. Grill, J. Franc, A. Toth, P. Hoschl, H. Sitter, P. Moravec. J. Cryst. Growth, 159 (1), 1117 (1996). DOI: 10.1016/0022-0248(95)00696-6
- H. Jung, H.C. Lee, C.-K. Kim. J. Electron. Mater., 25 (8), 1266 (1996)
- H. Jung, H.C. Lee, C.-K. Kim. Jpn. J. Appl. Phys., 35 (10B), L1321 (1996)
- B.E. Artz. J. Appl. Phys., 57 (8), 2886 (1985)
- A. Yeche, F. Boulard, C. Cervera, J.P. Perez, J.B. Rodriguez, P. Christol, O. Gravrand. Infrared Phys. Technol., 95, 170 (2018). DOI: 10.1016/j.infrared.2018.10.005
- D.A. Redfern, J.A. Thomas, C.A. Musca, J.M. Dell, L. Faraone. J. Electron. Mater., 30 (6), 696 (2001)
- M. Liu, S. Wang, J.C. Campbell, J.D. Beck, C.-F. Wan, M.A. Kinch. J. Appl. Phys., 98, 074509 (2005). DOI: 10.1063/1.2060948
- A.V. Vishnyakov, V.A. Stuchinsky, D.V. Brunev, A.V. Zverev, S.A. Dvoretsky. Appl. Phys. Lett., 104, 092112 (2014). DOI: 10.1063/1.4867349
- V.A. Stuchinsky, A.V. Vishnyakov. Trudy XXV Mezhd. nauchno-tekhnicheskoj konferencii i shkoly po fotoelektronike i priboram nochnogo videniya v dvukh tomakh, vol. 2, (AO "NPO"Orion", publishing house "OFSET MOSKVA", MOSCOW, 2018), p. 430-433 (in Russian)
- G.D. Boreman, Modulation Transfer Function in Optical and Electro-Optical Systems, Second Edition, V. TT121, ISBN: 9781510639379 (2021). DOI: 10.1117/3.419857
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.