Dispersion properties of nano- and micropores in track membranes
Mitrofanov A. V. 1, Feshchenko R. M. 1
1Lebedev Physical Institute, Russian Academy of Sciences, Moscow, Russia
Email: mitrofanovav@lebedev.ru, rusl@sci.lebedev.ru

PDF
A theoretical explanation of the constancy of the phase and group velocities of waves in through pores of polymer track membranes in the hard X-ray range, which was discovered in earlier works and not satisfactory explained by the theory of waveguide modes, is proposed. The developed X-ray propagation theory is based on the analytical solution of the parabolic equation in a waveguide by an integral transformation method. Using the 3D parabolic equation and a finite-difference method a numeric simulation of the X-ray propagation at two soft X-ray wavelengths was conducted, which demonstrated that the constancy of the phase and group velocities in through pores of track membranes holds in this case as well but with a lower precision. However, the product of the phase and group velocities is not equal to the square of the vacuum light speed anymore. It was also shown that constancy of the wave velocities in a pore breaks down when several propagating waveguides modes appear in it, which leads to oscillations of the wave velocities due to modes' interference. Keywords: X-ray filters, 3D parabolic equation, finite-difference method, waveguide modes, track membranes.
  1. P.Yu. Apel, S.N. Dmitriev. Trekovye membrany V kn. A.B. Yaroslavtsev (red.). Membrany i membrannye tekhnologii (Nauchny mir, M., 2013), s. 117-160
  2. M. Dominique, A.V. Mitrofanov, J.F. Hochedez, P.Y. Apel, U. Schuhle, F.A. Pudonin, A. BenMoussa. Appl. Opt., 48 (5), 834 (2009). DOI: 10.1364/AO.48.000834
  3. A.V. Mitrofanov. Quant. Electron., 48 (2), 105 (2018). DOI: 10.1070/QEL16540
  4. A.V. Mitrofanov, P.Yu. Apel. Nucl. Instr. Meth. B, 245, 332 (2006). DOI: 10.1070/QEL16540
  5. A.V. Mitrofanov, P.Yu. Apel. Izvestiya RAN. Ser. Fiz., 73 (1), 61 (2009) (in Russian)
  6. V.D. Kuznetsov (red.) Solnechno-zemnaya fizika: Rezultaty eksperimentov na sputnike KORONAS-F (Fizmatlit, M., 2009), s. 73. (in Russian)
  7. A.V. Mitrofanov, A.V. Popov, D.V. Prokopovich. Tech. Phys., 65 (11), 1814 (2020). DOI: 10.1134/S1063784220110195
  8. A.V. Mitrofanov, A.V. Popov, D.V. Prokopovich. Radioelektronika. Nanosistemy. Informatsionnyie tekhnolgii, 12 (2), 173 (2020) (in Russian). DOI: 10.17725/rensit.2020.12.173
  9. L. Brillouin. Wave Propagation and Group Velocity (Academic Press, 2013), v. 8
  10. P.D. Gasparyan, F.A. Starikov, A.N. Starostin. Phys. Usp., 41 (8), 761 (1998). DOI: 10.1070/PU1998v041n08ABEH000428
  11. A.V. Mitrofanov, R.M. Feshchenko. Kvantovaya elektronika, 2024 (v pechati) (in Russian)
  12. M. Born, E. Volf. Osnovy optiki (Nauka, M., 1973) (in Russian)
  13. A.V. Mitrofanov, R.M. Feshchenko. Bull. Lebedev Phys. Institute, 49 (6), 169 (2022). DOI: 10.3103/S1068335622060057
  14. R.M. Feshchenko, A.V. Popov. JOSA A., 28 (3), 373 (2011). DOI: 10.1364/JOSAA.28.000373
  15. X-Ray Interactions with Matter, 2010. URL: www.cxro.lbl.gov/optical_constants/

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru