A deep learning approach to the study of colloidal microparticles assembly process in three-dimensional space
Simkin I.V. 1, Shirokova A.A. 1, Shvetsov A.I.1, Kohanovskaya A.V.1, Zabavina P.A.1, Bondareva A.A.1, Libet P.A. 1, Kryuchkov N.P. 1, Yakovlev E.V. 1
1Bauman Moscow State Technical University, Moscow, Russia
Email: vanyasimkin@gmail.com, shirokova2001@yandex.ru, shvetsov.anton@mail.ru, libetpa@gmail.com, kruchkov_nkt@mail.ru, yakov.egor@gmail.com

PDF
We present a deep learning-based approach to visualize and analyze the three-dimensional self-assembly of microparticles in a fluid using laser-plane microscopy, followed by coordinate reconstruction in three dimensions. A YOLOv8 neural network was employed for this purpose. It has been demonstrated that the proposed post-processing technique allows for the detection of characteristic features in the scattering pattern of microparticles with a mean average precision of 0.93, as well as the extraction of their coordinates in three-dimensional space with an accuracy of up to 20% of their diameter. This approach holds promise for controlling the self-assembly processes of microparticles in three dimensions and has the potential for enhancing the development of novel materials and technologies, such as three-dimensional bioprinting and micro- and nanoscale fabrication. Keywords: soft matter, colloids, three-dimensional self-assembly, plane microscopy.
  1. N.A. Dmitryuk, L.A. Mistryukova, N.P. Kryuchkov, S.A. Khrapak, S.O. Yurchenko, Sci. Rep., 13 (1), 2815 (2023). DOI: 10.1038/s41598-022-26390-w
  2. E.N. Tsiok, Y.D. Fomin, E.A. Gaiduk, E.E. Tareyeva, V.N. Ryzhov, P.A. Libet, N.A. Dmitryuk, N.P. Kryuchkov, S.O. Yurchenko, J. Chem. Phys., 156 (11), 114703 (2022). DOI: 114703.10.1063/5.0075479
  3. E.V. Yakovlev, N.P. Kryuchkov, S.A. Korsakova, N.A. Dmitryuk, P.V. Ovcharov, M.M. Andronic, I.A. Rodionov, A.V. Sapelkin, S.O. Yurchenko, J. Coll. Interface Sci., 608, 564 (2022). DOI: 10.1016/j.jcis.2021.09.116
  4. M. Nishizawa, in Nanocarbons for energy conversion: supramolecular approaches, ed. by N. Nakashima. Ser. Nanostructure Science and Technology (Springer, Cham, 2019), p. 351--370. DOI: 10.1007/978-3-319-92917-0_15
  5. C.K. Wong, X. Qiang, A.H. Muller, A.H. Groschel, Prog. Polymer Sci., 102, 101211 (2020). DOI: 10.1016/j.progpolymsci.2020.101211
  6. V. Carrasco-Fadanelli, Y. Mao, T. Nakakomi, H. Xu, J. Yamamoto, T. Yanagishima, I. Buttinoni, Soft Matter, 20 (9), 2024 (2024). DOI: 10.1039/D3SM01320K
  7. K.A. Rose, M. Molaei, M.J. Boyle, D. Lee, J.C. Crocker, R.J. Composto, J. Appl. Phys., 127 (19), 191101 (2020). DOI: 10.1063/5.0003322
  8. A. Basu, L.B. Okello, N. Castellanos, S. Roh, O.D. Velev, Soft Matter, 19 (14), 2466 (2023). DOI: 10.1039/D3SM00090G
  9. Y. Li, Q. Fan, X. Wang, G. Liu, L. Chai, L. Zhou, J. Shao, Y. Yin, Adv. Funct. Mater., 31 (19), 2010746 (2021). DOI: 10.1039/D3TC02586A
  10. K. Yan, K. Zhou, X. Guo, C. Yang, D. Wang, Surf. Coat. Technol., 477, 130347 (2024). DOI: 10.1016/j.surfcoat.2023.130347
  11. S. Lantean, I. Roppolo, M. Sangermano, M. Hayoun, H. Dammak, G. Rizza, Add. Manuf., 47, 102343 (2021). DOI: 10.1016/j.addma.2021.102343
  12. J.J. Martin, B.E. Fiore, R.M. Erb, Nature Commun., 6 (1), 8641 (2015). DOI: 10.1038/ncomms9641
  13. Y. Kim, H. Yuk, R. Zhao, S.A. Chester, X. Zhao, Nature, 558 (7709), 274 (2018). DOI: 10.1038/s41586-018-0185-0
  14. M. Wang, J. Liu, R. Deng, J. Zhu, Fundam. Res., in press (2024). DOI: 10.1016/j.fmre.2023.12.018
  15. S. Li, J. Tang, Y. Liu, J. Hua, J. Liu, Compos. Sci. Technol., 249, 110493 (2024). DOI: 10.1016/j.compscitech.2024.110493
  16. C. Liu, X. Feng, S. Liu, G. Lin, Z. Bai, L. Wang, K. Zhu, X. Li, X. Liu, J. Mater. Sci. Technol., 168, 194 (2024). DOI: 10.1016/j.jmst.2023.06.007
  17. J. O'Leary, R. Mao, E.J. Pretti, J.A. Paulson, J. Mittal, A. Mesbah, Soft Matter, 17 (4), 989 (2021). DOI: 10.1039/D0SM01853H
  18. M.D. Hannel, A. Abdulali, M. O'Brien, D.G. Grier, Opt. Express, 26 (12), 15221 (2018). DOI: 10.1364/OE.26.015221
  19. G. Jocher, A. Chaurasia, J. Qiu, Ultralytics YOLOv8 (8.0.0) [Computer software] (2023). https://github.com/ultralytics/ultralytics
  20. D. Tzutalin, LabelImg [Computer software] (2015). https://github.com/tzutalin/labelImg

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru