A deep learning approach to the study of colloidal microparticles assembly process in three-dimensional space
Simkin I.V.
1, Shirokova A.A.
1, Shvetsov A.I.
1, Kohanovskaya A.V.
1, Zabavina P.A.
1, Bondareva A.A.
1, Libet P.A.
1, Kryuchkov N.P.
1, Yakovlev E.V.
11Bauman Moscow State Technical University, Moscow, Russia
Email: vanyasimkin@gmail.com, shirokova2001@yandex.ru, shvetsov.anton@mail.ru, libetpa@gmail.com, kruchkov_nkt@mail.ru, yakov.egor@gmail.com
We present a deep learning-based approach to visualize and analyze the three-dimensional self-assembly of microparticles in a fluid using laser-plane microscopy, followed by coordinate reconstruction in three dimensions. A YOLOv8 neural network was employed for this purpose. It has been demonstrated that the proposed post-processing technique allows for the detection of characteristic features in the scattering pattern of microparticles with a mean average precision of 0.93, as well as the extraction of their coordinates in three-dimensional space with an accuracy of up to 20% of their diameter. This approach holds promise for controlling the self-assembly processes of microparticles in three dimensions and has the potential for enhancing the development of novel materials and technologies, such as three-dimensional bioprinting and micro- and nanoscale fabrication. Keywords: soft matter, colloids, three-dimensional self-assembly, plane microscopy.
- N.A. Dmitryuk, L.A. Mistryukova, N.P. Kryuchkov, S.A. Khrapak, S.O. Yurchenko, Sci. Rep., 13 (1), 2815 (2023). DOI: 10.1038/s41598-022-26390-w
- E.N. Tsiok, Y.D. Fomin, E.A. Gaiduk, E.E. Tareyeva, V.N. Ryzhov, P.A. Libet, N.A. Dmitryuk, N.P. Kryuchkov, S.O. Yurchenko, J. Chem. Phys., 156 (11), 114703 (2022). DOI: 114703.10.1063/5.0075479
- E.V. Yakovlev, N.P. Kryuchkov, S.A. Korsakova, N.A. Dmitryuk, P.V. Ovcharov, M.M. Andronic, I.A. Rodionov, A.V. Sapelkin, S.O. Yurchenko, J. Coll. Interface Sci., 608, 564 (2022). DOI: 10.1016/j.jcis.2021.09.116
- M. Nishizawa, in Nanocarbons for energy conversion: supramolecular approaches, ed. by N. Nakashima. Ser. Nanostructure Science and Technology (Springer, Cham, 2019), p. 351--370. DOI: 10.1007/978-3-319-92917-0_15
- C.K. Wong, X. Qiang, A.H. Muller, A.H. Groschel, Prog. Polymer Sci., 102, 101211 (2020). DOI: 10.1016/j.progpolymsci.2020.101211
- V. Carrasco-Fadanelli, Y. Mao, T. Nakakomi, H. Xu, J. Yamamoto, T. Yanagishima, I. Buttinoni, Soft Matter, 20 (9), 2024 (2024). DOI: 10.1039/D3SM01320K
- K.A. Rose, M. Molaei, M.J. Boyle, D. Lee, J.C. Crocker, R.J. Composto, J. Appl. Phys., 127 (19), 191101 (2020). DOI: 10.1063/5.0003322
- A. Basu, L.B. Okello, N. Castellanos, S. Roh, O.D. Velev, Soft Matter, 19 (14), 2466 (2023). DOI: 10.1039/D3SM00090G
- Y. Li, Q. Fan, X. Wang, G. Liu, L. Chai, L. Zhou, J. Shao, Y. Yin, Adv. Funct. Mater., 31 (19), 2010746 (2021). DOI: 10.1039/D3TC02586A
- K. Yan, K. Zhou, X. Guo, C. Yang, D. Wang, Surf. Coat. Technol., 477, 130347 (2024). DOI: 10.1016/j.surfcoat.2023.130347
- S. Lantean, I. Roppolo, M. Sangermano, M. Hayoun, H. Dammak, G. Rizza, Add. Manuf., 47, 102343 (2021). DOI: 10.1016/j.addma.2021.102343
- J.J. Martin, B.E. Fiore, R.M. Erb, Nature Commun., 6 (1), 8641 (2015). DOI: 10.1038/ncomms9641
- Y. Kim, H. Yuk, R. Zhao, S.A. Chester, X. Zhao, Nature, 558 (7709), 274 (2018). DOI: 10.1038/s41586-018-0185-0
- M. Wang, J. Liu, R. Deng, J. Zhu, Fundam. Res., in press (2024). DOI: 10.1016/j.fmre.2023.12.018
- S. Li, J. Tang, Y. Liu, J. Hua, J. Liu, Compos. Sci. Technol., 249, 110493 (2024). DOI: 10.1016/j.compscitech.2024.110493
- C. Liu, X. Feng, S. Liu, G. Lin, Z. Bai, L. Wang, K. Zhu, X. Li, X. Liu, J. Mater. Sci. Technol., 168, 194 (2024). DOI: 10.1016/j.jmst.2023.06.007
- J. O'Leary, R. Mao, E.J. Pretti, J.A. Paulson, J. Mittal, A. Mesbah, Soft Matter, 17 (4), 989 (2021). DOI: 10.1039/D0SM01853H
- M.D. Hannel, A. Abdulali, M. O'Brien, D.G. Grier, Opt. Express, 26 (12), 15221 (2018). DOI: 10.1364/OE.26.015221
- G. Jocher, A. Chaurasia, J. Qiu, Ultralytics YOLOv8 (8.0.0) [Computer software] (2023). https://github.com/ultralytics/ultralytics
- D. Tzutalin, LabelImg [Computer software] (2015). https://github.com/tzutalin/labelImg
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.