Magomedov M. N.
11Institute for geothermal problems and renewable energy – branch of the joint Institute of high temperatures of the Russian Academy of Sciences, Makhachkala, Russia
Email: mahmag4@mail.ru
The properties of the disordered Au-Fe substitution alloy are studied based on the analytical method, which uses the paired interatomic potential of Mie-Lennard-Jones. The parameters of the interatomic potential for the FCC and BCC structures of Au and Fe are determined. Based on these parameters, the concentration dependences of the properties of the FCC and BCC structures of the Au-Fe alloy are calculated. Under normal conditions (i.e., pressure P=0 and temperature T=300 K), changes in the properties of the Au-Fe alloy at the structural phase transition of FCC-BCC are calculated. Using the RP-model of the nanocrystal, the displacement of the Cf concentration, at which the FCC-BCC phase transition occurs, due to a decrease in the size of the nanoparticle was calculated. It is shown that at an isochoric-isothermal decrease in the number of atoms (N) in an Au-Fe nanoparticle, the Cf value displace towards higher Fe concentrations. For a nanoparticle with a fixed number of atoms and a constant surface shape, the Cf value increases at an isochoric increase in temperature, and the Cf value decreases at an isothermal decrease in density. Calculations have shown that at N<59900 for the Au1-CFeC alloy at P=0, T≤300 K and at any iron concentration, the FCC structure is more stable than the BCC structure. Keywords: gold, iron, substitution alloy, phase transition, state equation, elastic modulus, thermal expansion, nanoparticle, surface energy.
- H. Okamoto, T.B. Massalski, L.J. Swartzendruber, P.A. Beck. Bull. Alloy Phase Diagrams 5, 6, 592 (1984). DOI: 10.1007/BF02868322
- T.B. Massalski, H. Okamoto, P.R. Subramanian, L. Kacprzak. Binary Alloy Phase Diagrams (ASM, USA, 1992), V. 1-3
- J.A. Munoz, M.S. Lucas, L. Mauger, I. Halevy, J. Horwath, S.L. Semiatin, Y. Xiao, P. Chow, M.B. Stone, D.L. Abernathy, B. Fultz. Phys. Rev. B 87, 1, 014301 (2013). DOI: 10.1103/PhysRevB.87.014301
- I.A. Zhuravlev, S.V. Barabash, J.M. An, K.D. Belashchenko. Phys. Rev. B 96, 13, 134109 (2017). DOI: 10.1103/PhysRevB.96.134109
- A. Tymoczko, M. Kamp, O. Prymak, C. Rehbock, J. Jakobi, U. Schurmann, L. Kienle, S. Barcikowski. Nanoscale 10, 35, 16434 (2018). DOI: 10.1039/c8nr03962c
- M.N. Magomedov. Phys. Solid State 62, 12, 2280 (2020). DOI: 10.1134/S1063783420120197
- M.N. Magomedov. Crystallography Rep. 62, 3, 480 (2017). DOI: 10.1134/S1063774517030142
- E.A. Moelwyn-Hughes. Phys. Chem. Pergamon Press, London (1961)
- M.N. Magomedov. Phys. Solid State 63, 2, 215 (2021). DOI: 10.1134/S1063783421020165
- M.N. Magomedov. Phys. Solid State 62, 7, 1126 (2020). DOI: 10.1134/S1063783420070136
- M.N. Magomedov. J. Surface Investigation. X-ray, Synchrotron Neutron Techniques 14, 6, 1208 (2020). DOI: 10.1134/S1027451020060105
- M.N. Magomedov. Technical Phys. 60, 11, 1619 (2015). DOI: 10.1134/S1063784215110195
- R. Briggs, F. Coppari, M.G. Gorman, R.F. Smith, S.J. Tracy, A.L. Coleman, A. Fernandez-Pa nella, M. Millot, J.H. Eggert, D.E. Fratanduono. Phys. Rev. Lett. 123, 4, 045701 (2019). DOI: 10.1103/PhysRevLett.123.045701
- S.S. Batsanov, A.S. Batsanov. Introduction to structural chemistry. Springer Science \& Business Media, Heidelberg (2012). 545 p. DOI: 10.1007/978-94-007-4771-5
- M.N. Magomedov. Phys. Solid State 60, 5, 981 (2018). DOI: 10.1134/S1063783418050190
- M.N. Magomedov. Phys. Solid State 61, 11, 2145 (2019). DOI: 10.1134/S1063783419110210
- F. Calvo, N. Combe, J. Morillo, M. Benoit. J. Phys. Chem. C 121, 8, 4680 (2017). DOI: 10.1021/acs.jpcc.6b12551
- M.G. Pamato, I.G. Wood, D.P. Dobson, S.A. Hunt, L. Vovcadlo. J. Appl. Crystallography 51, 2, 470 (2018). DOI: 10.1107/S1600576718002248
- M.M. Shukla, N.T. Padial. Rev. Brasil. Fi sica 3, 1, 39 (1973). http://sbfisica.org.br/bjp/download/v03/v03a03.pdf
- V.K. Kumikov, Kh.B. Khokonov. J. Appl. Phys. 54, 3, 1346 (1983). DOI: 10.1063/1.332209
- A. Patra, J.E. Bates, J. Sun, J.P. Perdew. Proc. Nat. Acad. Sci. 114, 44, E9188-E9196 (2017). DOI: 10.1073/pnas.1713320114
- J. Kangsabanik, R.K. Chouhan, D.D. Johnson, A. Alam. Phys. Rev. B 96, 10, 100201 (2017). DOI: 10.1103/PhysRevB.96.100201
- P.I. Dorogokupets, A.M. Dymshits, K.D. Litasov, T.S. Sokolova. Sci. Rep. 7, 41863, 1 (2017). DOI: 10.1038/srep41863
- S.K. Saxena, G. Eriksson. J. Phys. Chem. Solids 84, 70 (2015). DOI: 10.1016/j.jpcs.2015.03.006
- Y. Nishihara, Y. Nakajima, A. Akashi, N. Tsujino, E. Takahashi, K.I. Funakoshi, Y. Higo. Am. Mineralogist 97, 8-9, 1417 (2012). DOI: 10.2138/am.2012.3958
- H. Chamati, N.I. Papanicolaou, Y. Mishin, D.A. Papaconstantopoulos. Surface Science 600, 9, 1793 (2006). DOI: 10.1016/j.susc.2006.02.010
- S.I. Novikova. Teplovoe rasshirenie tverdyh tel (Nauka, M., 1974), 294 p. (in Russian)
- S. Schonecker, X. Li, B. Johansson, S.K. Kwon, L. Vitos. Sci. Rep. 5, 14860 (2015). DOI: 10.1038/srep14860
- D.J. Dever. J. Appl. Phys. 43, 8, 3293 (1972). DOI: 10.1063/1.1661710
- V.E. Zinov'ev. Teplofizicheskie svoistva metallov pri vysokikh temperaturakh (The Thermophysical Proper ties of Metals at High Temperatures). Metallurgiya, Moscow (1989). 384 p
- L.J. Swartzendruber. Bull. Alloy Phase Diagrams 3, 2, 161 (1982). DOI: 10.1007/BF02892374
- A.M. Balagurov, I.A. Bobrikov, I.S. Golovin. JETP Lett. 107 (9), 558 (2018). DOI: 10.7868/S0370274X18090084
- P.A. Montano, J. Zhao, M. Ramanathan, G.K. Shenoy, W. Schulze. In: Small Particles and Inorganic Clusters / Ed. C. Chapon, M.F. Gillet, C.R. Henry. Springer, Berlin, Heidelberg (1989). DOI: 10.1007/978-3-642-74913-1_23
- P. Mukherjee, X. Jiang, Y.Q. Wu, M.J. Kramer, J.E. Shield. J. Phys. Chem. C 117, 45, 24071 (2013). DOI: 10.1021/jp409015y
- D. Amram, C.A. Schuh. Phys. Rev. Lett. 121, 14, 145503 (2018). DOI: 10.1103/PhysRevLett.121.145503
- C. Sow, G. Mettela, G.U. Kulkarni. Annu. Rev. Mater. Res. 50, 345 (2020). DOI: 10.1146/annurev-matsci-092519-103517
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.